-
Notifications
You must be signed in to change notification settings - Fork 87
Description
GitHub Issue: AgentDB RuVector Ecosystem Integration
Title: [Enhancement] Integrate RuVector Ecosystem - Database Infrastructure (7 packages)
Labels: enhancement, agentdb, database, ruvector, priority: high
Assignees: @ruvnet
📋 Summary
Integrate 7 RuVector packages into agentdb to provide enterprise-grade database infrastructure including PostgreSQL backend, distributed clustering, hypergraph storage, and enhanced learning capabilities.
Impact:
- 1000x database scale (SQLite → PostgreSQL)
- 10x faster graph operations (native hypergraph)
- 100x scale increase (distributed clustering)
- Production-grade persistence and learning
🎯 Objectives
Core Updates (3 packages)
- Update
ruvectorfrom 0.1.30 → 0.1.38 (+8 versions) - Update
@ruvector/attentionfrom 0.1.2 → 0.1.3 - Update
@ruvector/sonafrom 0.1.3 → 0.1.4
New Infrastructure (4 packages)
- Add
@ruvector/postgres-cli@0.2.6- Enterprise PostgreSQL backend - Add
@ruvector/graph-node@0.1.25- Hypergraph storage - Add
@ruvector/cluster@0.1.0- Distributed clustering - Add
@ruvector/server@0.1.0- HTTP/gRPC API server
📦 Package Details
1. ruvector@0.1.38 (UPDATE)
Current: 0.1.30
Target: 0.1.38 (+8 versions)
Priority: HIGH
Changes:
npm install ruvector@^0.1.38Integration Points:
src/backends/ruvector/RuVectorBackend.ts- Core backendsrc/backends/ruvector/RuVectorLearning.ts- Learning integration
Testing:
cd packages/agentdb
npm test
npm run benchmarkExpected Impact:
- Bug fixes from 8 version updates
- Performance improvements
- New features in core API
2. @ruvector/attention@0.1.3 (UPDATE)
Current: 0.1.2
Target: 0.1.3
Priority: MEDIUM
Changes:
npm install @ruvector/attention@^0.1.3Integration Points:
src/controllers/AttentionService.tssrc/wrappers/attention-native.tssrc/wrappers/attention-fallbacks.js
New Features:
- NAPI binding improvements
- WASM fallback enhancements
- Performance optimizations
Testing:
npm run benchmark:attention3. @ruvector/sona@0.1.4 (UPDATE)
Current: 0.1.3
Target: 0.1.4
Priority: MEDIUM
Changes:
npm install @ruvector/sona@^0.1.4Integration Points:
src/services/federated-learning.ts:7- EphemeralLearningAgent
- FederatedLearningCoordinator
New Features:
- Enhanced LoRA (Low-Rank Adaptation)
- Improved EWC++ (Elastic Weight Consolidation)
- Sub-millisecond learning overhead
- Better ReasoningBank integration
Testing:
npm run test:unit
# Verify federated learning still works4. @ruvector/postgres-cli@0.2.6 (NEW)
Priority: CRITICAL
Impact: Enterprise-grade persistence
Installation:
npm install @ruvector/postgres-cli@^0.2.6 pg@^8.11.0Implementation:
Step 1: Create PostgreSQL Backend
// File: packages/agentdb/src/backends/postgres/PostgresBackend.ts
import { Client } from 'pg';
import type { VectorBackend, SearchResult, SearchOptions } from '../VectorBackend.js';
export class PostgresRuVectorBackend implements VectorBackend {
readonly name = 'postgres-ruvector' as const;
private client: Client;
private initialized = false;
constructor(private connectionString: string) {}
async initialize(): Promise<void> {
if (this.initialized) return;
// Connect to PostgreSQL
this.client = new Client({
connectionString: this.connectionString
});
await this.client.connect();
// Create RuVector extension
await this.client.query(`
CREATE EXTENSION IF NOT EXISTS ruvector;
CREATE TABLE IF NOT EXISTS reasoning_patterns (
id BIGSERIAL PRIMARY KEY,
session_id TEXT NOT NULL,
task TEXT NOT NULL,
embedding vector(384),
reward FLOAT NOT NULL,
success BOOLEAN NOT NULL,
input TEXT,
output TEXT,
critique TEXT,
metadata JSONB,
created_at TIMESTAMPTZ DEFAULT NOW(),
updated_at TIMESTAMPTZ DEFAULT NOW()
);
-- HNSW index for fast similarity search
CREATE INDEX IF NOT EXISTS patterns_embedding_idx
ON reasoning_patterns
USING hnsw (embedding vector_cosine_ops)
WITH (m = 16, ef_construction = 200);
-- Additional indexes
CREATE INDEX IF NOT EXISTS patterns_session_idx ON reasoning_patterns(session_id);
CREATE INDEX IF NOT EXISTS patterns_task_idx ON reasoning_patterns(task);
CREATE INDEX IF NOT EXISTS patterns_created_idx ON reasoning_patterns(created_at);
`);
this.initialized = true;
}
async insert(id: string, embedding: Float32Array, metadata?: Record<string, any>): Promise<void> {
await this.client.query(`
INSERT INTO reasoning_patterns (session_id, task, embedding, reward, success, input, output, critique, metadata)
VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9)
`, [
metadata?.sessionId || id,
metadata?.task || '',
`[${Array.from(embedding).join(',')}]`,
metadata?.reward || 0.0,
metadata?.success || false,
metadata?.input || null,
metadata?.output || null,
metadata?.critique || null,
metadata ? JSON.stringify(metadata) : null
]);
}
async search(query: Float32Array, k: number, options?: SearchOptions): Promise<SearchResult[]> {
const threshold = options?.threshold || 0.0;
const result = await this.client.query(`
SELECT
session_id,
task,
reward,
success,
metadata,
1 - (embedding <=> $1::vector) AS similarity
FROM reasoning_patterns
WHERE 1 - (embedding <=> $1::vector) >= $2
ORDER BY embedding <=> $1::vector
LIMIT $3
`, [
`[${Array.from(query).join(',')}]`,
threshold,
k
]);
return result.rows.map(row => ({
id: row.session_id,
distance: 1 - row.similarity,
similarity: row.similarity,
metadata: {
task: row.task,
reward: row.reward,
success: row.success,
...(row.metadata || {})
}
}));
}
async remove(id: string): Promise<boolean> {
const result = await this.client.query(
'DELETE FROM reasoning_patterns WHERE session_id = $1',
[id]
);
return result.rowCount > 0;
}
getStats() {
return {
count: 0, // TODO: Query count
dimension: 384,
metric: 'cosine' as const,
backend: 'postgres-ruvector' as const
};
}
async close(): Promise<void> {
await this.client.end();
}
}Step 2: Add Backend Selector
// File: packages/agentdb/src/backends/BackendSelector.ts
import { PostgresRuVectorBackend } from './postgres/PostgresBackend.js';
export function createBackend(config: BackendConfig): VectorBackend {
switch (config.type) {
case 'postgres':
return new PostgresRuVectorBackend(config.connectionString);
// ... existing backends
}
}Step 3: CLI Installation Command
# Add to package.json scripts
"scripts": {
"postgres:install": "npx @ruvector/postgres-cli install",
"postgres:start": "npx @ruvector/postgres-cli start",
"postgres:stop": "npx @ruvector/postgres-cli stop",
"postgres:status": "npx @ruvector/postgres-cli status"
}Configuration:
# .env
AGENTDB_BACKEND=postgres
AGENTDB_POSTGRES_URL=postgresql://localhost:5432/agentdbTesting:
# Install PostgreSQL with RuVector
npx @ruvector/postgres-cli install
# Start server
npx @ruvector/postgres-cli start
# Test backend
AGENTDB_BACKEND=postgres npm test
# Benchmark
npm run benchmark:backendsExpected Impact:
- ✅ 1000x scale (millions → billions of vectors)
- ✅ 53+ SQL vector functions
- ✅ ACID transactions
- ✅ Production-grade persistence
5. @ruvector/graph-node@0.1.25 (NEW)
Priority: HIGH
Impact: 10x faster graph operations
Installation:
npm install @ruvector/graph-node@^0.1.25Implementation:
// File: packages/agentdb/src/controllers/CausalMemoryGraph.ts (ENHANCE)
import { HyperGraph } from '@ruvector/graph-node';
export class CausalMemoryGraph {
private graph: HyperGraph;
async initialize(path: string = './data/causal-graph.db') {
this.graph = new HyperGraph({
persistent: true,
path,
indexes: ['Event.timestamp', 'Event.type', 'Event.agentId']
});
}
async addCausalChain(events: Event[]): Promise<void> {
// Add events as nodes
for (const event of events) {
await this.graph.addNode(event.id, {
type: event.type,
timestamp: event.timestamp,
agentId: event.agentId,
data: event.data
});
}
// Create hyperedge connecting all events
await this.graph.addHyperEdge({
nodes: events.map(e => e.id),
label: 'CAUSED_BY',
properties: {
confidence: this.calculateConfidence(events),
timestamp: Date.now(),
chain_length: events.length
}
});
}
async queryCausalPath(outcomeId: string): Promise<Event[]> {
// Use Cypher query for complex graph traversal
const result = await this.graph.cypher(`
MATCH path = (root:Event)-[:CAUSED_BY*1..5]->(outcome:Event {id: $outcomeId})
WHERE root.type = 'root_cause'
RETURN path,
length(path) as depth,
reduce(conf = 1.0, r in relationships(path) | conf * r.confidence) as chain_confidence
ORDER BY chain_confidence DESC
LIMIT 10
`, { outcomeId });
return result.map(r => this.extractEvents(r.path));
}
async findSimilarPatterns(pattern: CausalPattern): Promise<CausalPattern[]> {
// Subgraph matching
const result = await this.graph.cypher(`
MATCH (a:Event)-[:CAUSED_BY]->(b:Event)-[:CAUSED_BY]->(c:Event)
WHERE a.type = $type1 AND b.type = $type2
RETURN a, b, c
`, { type1: pattern.start, type2: pattern.middle });
return this.patternsFromResult(result);
}
}Testing:
npm run test:graph
npm run benchmark:graphExpected Impact:
- ✅ 10x faster than in-memory JS graphs
- ✅ Hyperedge support (N-way relationships)
- ✅ Persistent storage
- ✅ Cypher query language
6. @ruvector/cluster@0.1.0 (NEW)
Priority: MEDIUM (Enterprise feature)
Impact: 100x scale increase
Installation:
npm install @ruvector/cluster@^0.1.0Implementation:
// File: packages/agentdb/src/distributed/cluster-manager.ts
import { ClusterManager } from '@ruvector/cluster';
import type { VectorBackend } from '../backends/VectorBackend.js';
export class DistributedAgentDB {
private cluster: ClusterManager;
private localShard: VectorBackend;
async initialize(config: ClusterConfig) {
this.cluster = new ClusterManager({
nodeId: config.nodeId,
nodes: config.nodes, // ['node1:5000', 'node2:5000', 'node3:5000']
raft: {
electionTimeout: 1000,
heartbeatInterval: 100,
snapshotInterval: 3600000
},
sharding: {
strategy: 'consistent-hash',
virtualNodes: 150,
replicas: 3
}
});
await this.cluster.join();
this.localShard = await this.createLocalShard();
}
async insert(pattern: ReasoningPattern): Promise<void> {
const shardId = this.cluster.getShard(pattern.sessionId);
if (shardId === this.cluster.nodeId) {
// Local insert
await this.localShard.insert(pattern.sessionId, pattern.embedding, pattern);
} else {
// Forward to remote node
await this.cluster.forward(shardId, 'insert', pattern);
}
// Replicate via Raft
await this.cluster.replicate(pattern);
}
async search(query: Float32Array, k: number): Promise<ReasoningPattern[]> {
// Scatter-gather across all shards
const shards = this.cluster.getAllShards();
const results = await Promise.all(
shards.map(shard =>
this.cluster.forward(shard, 'search', { query, k })
)
);
// Merge and re-rank globally
return this.mergeResults(results, k);
}
}Docker Compose Setup:
# File: docker/docker-compose.cluster.yml
version: '3.8'
services:
agentdb-node1:
image: ruvnet/agentdb:latest
environment:
- NODE_ID=node1
- CLUSTER_NODES=node1:5000,node2:5000,node3:5000
- RAFT_ELECTION_TIMEOUT=1000
ports:
- "5001:5000"
volumes:
- node1-data:/app/data
agentdb-node2:
image: ruvnet/agentdb:latest
environment:
- NODE_ID=node2
- CLUSTER_NODES=node1:5000,node2:5000,node3:5000
ports:
- "5002:5000"
volumes:
- node2-data:/app/data
agentdb-node3:
image: ruvnet/agentdb:latest
environment:
- NODE_ID=node3
- CLUSTER_NODES=node1:5000,node2:5000,node3:5000
ports:
- "5003:5000"
volumes:
- node3-data:/app/data
volumes:
node1-data:
node2-data:
node3-data:Testing:
# Start cluster
docker-compose -f docker/docker-compose.cluster.yml up -d
# Test cluster
npm run test:cluster
# Benchmark distributed search
npm run benchmark:clusterExpected Impact:
- ✅ 100x scale (distributed across nodes)
- ✅ Fault tolerance (Raft consensus)
- ✅ Automatic sharding
- ✅ Data replication
7. @ruvector/server@0.1.0 (NEW)
Priority: MEDIUM
Impact: Language-agnostic access
Installation:
npm install @ruvector/server@^0.1.0Implementation:
// File: packages/agentdb/src/server/agentdb-server.ts
import { RuVectorServer } from '@ruvector/server';
import type { AgentDB } from '../AgentDB.js';
export class AgentDBServer {
private server: RuVectorServer;
private agentDB: AgentDB;
async start(port: number = 5432) {
this.server = new RuVectorServer({
port,
cors: {
origin: process.env.CORS_ORIGIN || '*',
credentials: true
},
auth: {
type: 'api-key',
keys: process.env.API_KEYS?.split(',') || []
},
rateLimit: {
max: 100,
windowMs: 60000
}
});
// Vector search endpoint
this.server.post('/vectors/search', async (req, res) => {
const { query, k = 5, threshold } = req.body;
const results = await this.agentDB.search(query, k, { threshold });
res.json({ results });
});
// Pattern search endpoint
this.server.post('/patterns/search', async (req, res) => {
const { task, k = 5, minReward } = req.body;
const patterns = await this.agentDB.searchPatterns(task, k, minReward);
res.json({ patterns });
});
// Pattern storage endpoint
this.server.post('/patterns/store', async (req, res) => {
const pattern = req.body;
await this.agentDB.storePattern(pattern);
res.json({ success: true });
});
// Server-Sent Events for real-time updates
this.server.get('/patterns/stream', (req, res) => {
res.setHeader('Content-Type', 'text/event-stream');
this.agentDB.on('pattern:stored', (pattern) => {
res.write(`data: ${JSON.stringify(pattern)}\n\n`);
});
});
await this.server.listen();
console.log(`✅ AgentDB Server running on port ${port}`);
}
}CLI Integration:
# Add to package.json
"scripts": {
"server:start": "node dist/server/agentdb-server.js",
"server:dev": "tsx src/server/agentdb-server.ts"
}Client Example (Python):
import requests
# Search patterns
response = requests.post('http://localhost:5432/patterns/search', json={
'task': 'implement authentication',
'k': 5,
'minReward': 0.8
})
patterns = response.json()['patterns']
for pattern in patterns:
print(f"Task: {pattern['task']}, Reward: {pattern['reward']}")Testing:
npm run server:start &
sleep 2
# Test endpoints
curl -X POST http://localhost:5432/patterns/search \
-H "Content-Type: application/json" \
-d '{"task": "test", "k": 5}'Expected Impact:
- ✅ HTTP/gRPC API access
- ✅ Language-agnostic clients
- ✅ Real-time streaming (SSE)
- ✅ Production-ready (auth + rate limiting)
🧪 Testing Strategy
Unit Tests
// File: packages/agentdb/tests/backends/postgres.test.ts
describe('PostgresRuVectorBackend', () => {
test('should insert and search vectors', async () => {
const backend = new PostgresRuVectorBackend(process.env.POSTGRES_URL);
await backend.initialize();
const embedding = new Float32Array(384).fill(0.5);
await backend.insert('test-1', embedding, { task: 'test' });
const results = await backend.search(embedding, 1);
expect(results[0].id).toBe('test-1');
});
});Integration Tests
# File: packages/agentdb/tests/integration/cluster.test.ts
describe('Distributed Cluster', () => {
test('should replicate data across nodes', async () => {
// Start 3-node cluster
// Insert on node1
// Read from node2 and node3
// Verify data replication
});
});Benchmarks
npm run benchmark:postgres # PostgreSQL vs SQLite
npm run benchmark:graph # Hypergraph vs in-memory
npm run benchmark:cluster # Single vs distributed
npm run benchmark:all # Complete suite📊 Success Criteria
Performance
- PostgreSQL backend: 1000x capacity increase
- Hypergraph: 10x faster than current implementation
- Cluster: Successfully replicates across 3 nodes
- Server: <10ms API response time
Testing
- All existing tests pass
- New backend tests added
- Integration tests for clustering
- Benchmark comparisons documented
Documentation
- Migration guide (SQLite → PostgreSQL)
- Cluster deployment guide
- API documentation for server
- Updated README with new capabilities
📅 Implementation Timeline
Week 1: Core Updates
- Update ruvector, attention, sona (Day 1)
- Run full test suite (Day 1)
- Verify no regressions (Day 2)
Week 2: PostgreSQL Backend
- Implement PostgresBackend class (Day 3-4)
- Create migration scripts (Day 5)
- Test and benchmark (Day 6)
Week 3: Hypergraph Integration
- Enhance CausalMemoryGraph (Day 7-8)
- Add Cypher query support (Day 9)
- Test and benchmark (Day 10)
Week 4: Advanced Features
- Implement clustering (Day 11-12)
- Add HTTP server (Day 13)
- Integration testing (Day 14)
- Documentation (Day 15)
Total: ~15 days (3 weeks)
🔗 Related Documentation
💬 Notes
- PostgreSQL backend is optional - SQLite remains default
- Clustering is enterprise feature - single-node by default
- Server can be run separately or embedded
- All changes are backward compatible
Priority: High
Effort: 3 weeks
Impact: Enterprise-grade database infrastructure
Version: agentdb@2.0.0-alpha.2.21