Skip to content

Extend FPS with an extra ptr argument #180

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jun 5, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .github/workflows/testing.yml
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ jobs:

- name: Install main package
run: |
pip install scipy==1.10.1 # Python 3.8 support
python setup.py develop

- name: Run test-suite
Expand Down
16 changes: 12 additions & 4 deletions test/test_fps.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,19 +25,27 @@ def test_fps(dtype, device):
[+2, -2],
], dtype, device)
batch = tensor([0, 0, 0, 0, 1, 1, 1, 1], torch.long, device)
ptr_list = [0, 4, 8]
ptr = torch.tensor(ptr_list, device=device)

out = fps(x, batch, random_start=False)
assert out.tolist() == [0, 2, 4, 6]

out = fps(x, batch, ratio=0.5, random_start=False)
assert out.tolist() == [0, 2, 4, 6]

out = fps(x, batch, ratio=torch.tensor(0.5, device=device),
random_start=False)
ratio = torch.tensor(0.5, device=device)
out = fps(x, batch, ratio=ratio, random_start=False)
assert out.tolist() == [0, 2, 4, 6]

out = fps(x, batch, ratio=torch.tensor([0.5, 0.5], device=device),
random_start=False)
out = fps(x, ptr=ptr_list, ratio=0.5, random_start=False)
assert out.tolist() == [0, 2, 4, 6]

out = fps(x, ptr=ptr, ratio=0.5, random_start=False)
assert out.tolist() == [0, 2, 4, 6]

ratio = torch.tensor([0.5, 0.5], device=device)
out = fps(x, batch, ratio=ratio, random_start=False)
assert out.tolist() == [0, 2, 4, 6]

out = fps(x, random_start=False)
Expand Down
51 changes: 40 additions & 11 deletions torch_cluster/fps.py
Original file line number Diff line number Diff line change
@@ -1,27 +1,42 @@
from typing import Optional, Union
from typing import List, Optional, Union

import torch
from torch import Tensor

import torch_cluster.typing


@torch.jit._overload # noqa
def fps(src, batch, ratio, random_start, batch_size, ptr): # noqa
# type: (Tensor, Optional[Tensor], Optional[float], bool, Optional[int], Optional[Tensor]) -> Tensor # noqa
pass # pragma: no cover


@torch.jit._overload # noqa
def fps(src, batch, ratio, random_start, batch_size, ptr): # noqa
# type: (Tensor, Optional[Tensor], Optional[Tensor], bool, Optional[int], Optional[Tensor]) -> Tensor # noqa
pass # pragma: no cover


@torch.jit._overload # noqa
def fps(src, batch, ratio, random_start, batch_size): # noqa
# type: (Tensor, Optional[Tensor], Optional[float], bool, Optional[int]) -> Tensor # noqa
def fps(src, batch, ratio, random_start, batch_size, ptr): # noqa
# type: (Tensor, Optional[Tensor], Optional[float], bool, Optional[int], Optional[List[int]]) -> Tensor # noqa
pass # pragma: no cover


@torch.jit._overload # noqa
def fps(src, batch, ratio, random_start, batch_size): # noqa
# type: (Tensor, Optional[Tensor], Optional[Tensor], bool, Optional[int]) -> Tensor # noqa
def fps(src, batch, ratio, random_start, batch_size, ptr): # noqa
# type: (Tensor, Optional[Tensor], Optional[Tensor], bool, Optional[int], Optional[List[int]]) -> Tensor # noqa
pass # pragma: no cover


def fps( # noqa
src: torch.Tensor,
batch: Optional[Tensor] = None,
ratio: Optional[Union[torch.Tensor, float]] = None,
ratio: Optional[Union[Tensor, float]] = None,
random_start: bool = True,
batch_size: Optional[int] = None,
ptr: Optional[Union[Tensor, List[int]]] = None,
):
r""""A sampling algorithm from the `"PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space"
Expand All @@ -40,6 +55,10 @@ def fps( # noqa
node in :math:`\mathbf{X}` as starting node. (default: obj:`True`)
batch_size (int, optional): The number of examples :math:`B`.
Automatically calculated if not given. (default: :obj:`None`)
ptr (torch.Tensor or [int], optional): If given, batch assignment will
be determined based on boundaries in CSR representation, *e.g.*,
:obj:`batch=[0,0,1,1,1,2]` translates to :obj:`ptr=[0,2,5,6]`.
(default: :obj:`None`)

:rtype: :class:`LongTensor`

Expand All @@ -52,7 +71,6 @@ def fps( # noqa
batch = torch.tensor([0, 0, 0, 0])
index = fps(src, batch, ratio=0.5)
"""

r: Optional[Tensor] = None
if ratio is None:
r = torch.tensor(0.5, dtype=src.dtype, device=src.device)
Expand All @@ -62,6 +80,17 @@ def fps( # noqa
r = ratio
assert r is not None

if ptr is not None:
if isinstance(ptr, list) and torch_cluster.typing.WITH_PTR_LIST:
return torch.ops.torch_cluster.fps_ptr_list(
src, ptr, r, random_start)

if isinstance(ptr, list):
return torch.ops.torch_cluster.fps(
src, torch.tensor(ptr, device=src.device), r, random_start)
else:
return torch.ops.torch_cluster.fps(src, ptr, r, random_start)

if batch is not None:
assert src.size(0) == batch.numel()
if batch_size is None:
Expand All @@ -70,9 +99,9 @@ def fps( # noqa
deg = src.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch, torch.ones_like(batch))

ptr = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr[1:])
ptr_vec = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_vec[1:])
else:
ptr = torch.tensor([0, src.size(0)], device=src.device)
ptr_vec = torch.tensor([0, src.size(0)], device=src.device)

return torch.ops.torch_cluster.fps(src, ptr, r, random_start)
return torch.ops.torch_cluster.fps(src, ptr_vec, r, random_start)
3 changes: 3 additions & 0 deletions torch_cluster/typing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
import torch

WITH_PTR_LIST = hasattr(torch.ops.torch_cluster, 'fps_ptr_list')