Skip to content

Commit

Permalink
Merge pull request #681 from roboflow/feature/stability_ai_inpainting
Browse files Browse the repository at this point in the history
Add Stability AI inpainting
  • Loading branch information
PawelPeczek-Roboflow authored Sep 26, 2024
2 parents 5a6be7f + 10ebc16 commit 1b4f6ed
Show file tree
Hide file tree
Showing 4 changed files with 175 additions and 0 deletions.
4 changes: 4 additions & 0 deletions inference/core/workflows/core_steps/loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,9 @@
from inference.core.workflows.core_steps.models.foundation.segment_anything2.v1 import (
SegmentAnything2BlockV1,
)
from inference.core.workflows.core_steps.models.foundation.stability_ai.inpainting.v1 import (
StabilityAIInpaintingBlockV1,
)
from inference.core.workflows.core_steps.models.foundation.yolo_world.v1 import (
YoloWorldModelBlockV1,
)
Expand Down Expand Up @@ -347,6 +350,7 @@ def load_blocks() -> List[Type[WorkflowBlock]]:
LineCounterBlockV1,
PolygonZoneVisualizationBlockV1,
Florence2BlockV1,
StabilityAIInpaintingBlockV1,
]


Expand Down
Empty file.
Empty file.
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
"""
Credits to: https://github.com/Fafruch for origin idea
"""

from typing import List, Literal, Optional, Type, Union

import cv2
import numpy as np
import requests
import supervision as sv
from pydantic import ConfigDict, Field
from supervision import Color

from inference.core.workflows.execution_engine.entities.base import (
OutputDefinition,
WorkflowImageData,
)
from inference.core.workflows.execution_engine.entities.types import (
IMAGE_KIND,
INSTANCE_SEGMENTATION_PREDICTION_KIND,
STRING_KIND,
StepOutputImageSelector,
StepOutputSelector,
WorkflowImageSelector,
WorkflowParameterSelector,
)
from inference.core.workflows.prototypes.block import (
BlockResult,
WorkflowBlock,
WorkflowBlockManifest,
)

LONG_DESCRIPTION = """
The block wraps
[Stability AI inpainting API](https://platform.stability.ai/docs/legacy/grpc-api/features/inpainting#Python) and
let users use instance segmentation results to change the content of images in a creative way.
"""

SHORT_DESCRIPTION = "Uses segmentation masks to inpaint objects into image"

API_HOST = "https://api.stability.ai"
ENDPOINT = "/v2beta/stable-image/edit/inpaint"


class BlockManifest(WorkflowBlockManifest):
model_config = ConfigDict(
json_schema_extra={
"name": "Stability AI Inpainting",
"version": "v1",
"short_description": SHORT_DESCRIPTION,
"long_description": LONG_DESCRIPTION,
"license": "Apache-2.0",
"block_type": "model",
"search_keywords": [
"Stability AI",
"stability.ai",
"inpainting",
"image generation",
],
}
)
type: Literal["roboflow_core/stability_ai_inpainting@v1"]
image: Union[WorkflowImageSelector, StepOutputImageSelector] = Field(
description="The image which was the base to generate VLM prediction",
examples=["$inputs.image", "$steps.cropping.crops"],
)
segmentation_mask: StepOutputSelector(
kind=[INSTANCE_SEGMENTATION_PREDICTION_KIND]
) = Field(
name="Segmentation Mask",
description="Segmentation masks",
examples=["$steps.model.predictions"],
)
prompt: Union[
WorkflowParameterSelector(kind=[STRING_KIND]),
StepOutputSelector(kind=[STRING_KIND]),
str,
] = Field(
description="Prompt to inpainting model (what you wish to see)",
examples=["my prompt", "$inputs.prompt"],
)
negative_prompt: Optional[
Union[
WorkflowParameterSelector(kind=[STRING_KIND]),
StepOutputSelector(kind=[STRING_KIND]),
str,
]
] = Field(
default=None,
description="Negative prompt to inpainting model (what you do not wish to see)",
examples=["my prompt", "$inputs.prompt"],
)
api_key: Union[WorkflowParameterSelector(kind=[STRING_KIND]), str] = Field(
description="Your Stability AI API key",
examples=["xxx-xxx", "$inputs.stability_ai_api_key"],
private=True,
)

@classmethod
def describe_outputs(cls) -> List[OutputDefinition]:
return [
OutputDefinition(name="image", kind=[IMAGE_KIND]),
]

@classmethod
def get_execution_engine_compatibility(cls) -> Optional[str]:
return ">=1.0.0,<2.0.0"


class StabilityAIInpaintingBlockV1(WorkflowBlock):

@classmethod
def get_manifest(cls) -> Type[WorkflowBlockManifest]:
return BlockManifest

def run(
self,
image: WorkflowImageData,
segmentation_mask: sv.Detections,
prompt: str,
negative_prompt: str,
api_key: str,
) -> BlockResult:
black_image = np.zeros_like(image.numpy_image)
mask_annotator = sv.MaskAnnotator(color=Color.WHITE, opacity=1.0)
mask = mask_annotator.annotate(black_image, segmentation_mask)
mask = cv2.GaussianBlur(mask, (15, 15), 0)
encoded_image = numpy_array_to_jpeg_bytes(image=image.numpy_image)
encoded_mask = numpy_array_to_jpeg_bytes(image=mask)
request_data = {
"prompt": prompt,
"output_format": "jpeg",
}
response = requests.post(
f"{API_HOST}{ENDPOINT}",
headers={"authorization": f"Bearer {api_key}", "accept": "image/*"},
files={
"image": encoded_image,
"mask": encoded_mask,
},
data=request_data,
)
if response.status_code != 200:
raise RuntimeError(
f"Request to StabilityAI API failed: {str(response.json())}"
)
result_image = bytes_to_opencv_image(payload=response.content)
return {
"image": WorkflowImageData(
parent_metadata=image.parent_metadata,
workflow_root_ancestor_metadata=image.workflow_root_ancestor_metadata,
numpy_image=result_image,
)
}


def numpy_array_to_jpeg_bytes(
image: np.ndarray,
) -> bytes:
_, img_encoded = cv2.imencode(".jpg", image)
return np.array(img_encoded).tobytes()


def bytes_to_opencv_image(
payload: bytes, array_type: np.number = np.uint8
) -> np.ndarray:
bytes_array = np.frombuffer(payload, dtype=array_type)
decoding_result = cv2.imdecode(bytes_array, cv2.IMREAD_UNCHANGED)
if decoding_result is None:
raise ValueError("Could not encode bytes to OpenCV image.")
return decoding_result

0 comments on commit 1b4f6ed

Please sign in to comment.