-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8 changed files
with
417 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
from skimage import data | ||
from skimage.transform import swirl | ||
|
||
|
||
image = data.checkerboard() | ||
|
||
def shift_left(xy): | ||
offset = np.array([100, 100]) | ||
xy -= offset | ||
r = np.linalg.norm(xy, axis=1) | ||
angle = np.arctan2(xy[:, 1], xy[:, 0]) | ||
a = 1000 | ||
r_new = a * 1/r**3 + r | ||
xy = np.array([np.cos(angle)*r_new, np.sin(angle)*r_new]).T | ||
|
||
xy += offset | ||
return xy | ||
|
||
def shift_left2(xy): | ||
offset = np.array([10, 10]) | ||
xy -= offset | ||
xy *= 10 | ||
r = np.linalg.norm(xy, axis=1) | ||
angle = np.arctan2(xy[:, 1], xy[:, 0]) | ||
strength = 1/r**2 * 1 | ||
deformation = np.array([np.cos(angle)*strength, np.sin(angle)*strength]).T | ||
xy += offset*10 | ||
for i in range(0, xy.shape[0]): | ||
plt.plot([xy[i, 0], xy[i, 0]+deformation[i, 0]], [xy[i, 1], xy[i, 1]+deformation[i, 1]]) | ||
#plt.show() | ||
xy -= deformation | ||
return xy | ||
|
||
|
||
from skimage.transform import warp | ||
print(image.shape) | ||
swirled = warp(image[::1, ::1], shift_left) | ||
#swirled = warp(image[0:1, ::1], shift_left) | ||
|
||
fig, (ax0, ax1) = plt.subplots(nrows=1, ncols=2, figsize=(8, 3), | ||
sharex=True, sharey=True) | ||
|
||
ax0.imshow(image, cmap=plt.cm.gray, interpolation="nearest") | ||
ax0.axis('off') | ||
ax1.imshow(swirled, cmap=plt.cm.gray, interpolation="nearest") | ||
ax1.axis('off') | ||
|
||
plt.sca(ax1) | ||
swirled2 = warp(image[::10, ::10], shift_left2) | ||
|
||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,222 @@ | ||
import saenopy | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from pathlib import Path | ||
from saenopy.materials import SemiAffineFiberMaterial | ||
import os | ||
from saenopy.getDeformations import interpolate_different_mesh | ||
from saenopy.multigridHelper import getScaledMesh, createMesh | ||
import time | ||
|
||
M = saenopy.Solver() | ||
Wx = 2e-2*1.05 | ||
Wy = 2e-2 | ||
Wz = 700e-6*1e-3/(Wx*Wy) | ||
R, T = createMesh(element_width=500e-6, box_width=(Wx, Wy, Wz)) | ||
R[:, 0] -= np.min(R[:, 0]) | ||
R[:, 0] -= np.max(R[:, 0])/2 | ||
R[:, 1] -= np.min(R[:, 1]) | ||
R[:, 1] -= np.max(R[:, 1])/2 | ||
R[:, 2] -= np.min(R[:, 2]) | ||
bcond_disp = np.zeros_like(R) * np.nan | ||
bcond_force = np.zeros_like(R) | ||
minR = np.min(R, axis=0) | ||
maxR = np.max(R, axis=0) | ||
width = 0.5e-6 | ||
wall_x0 = (R[:, 0] < minR[0] + width) | ||
wall_x1 = (R[:, 0] > maxR[0] - width) | ||
wall_y0 = (R[:, 1] < minR[1] + width) | ||
wall_y1 = (R[:, 1] > maxR[1] - width) | ||
wall_z0 = (R[:, 2] < minR[2] + width) | ||
bcond_force[wall_x0 | wall_x1] = np.nan | ||
bcond_force[wall_y0 | wall_y1] = np.nan | ||
bcond_force[wall_z0] = np.nan | ||
stretch = 0.05 * Wx | ||
bcond_disp[wall_x0] = np.array([-stretch / 2, 0, 0]) | ||
bcond_disp[wall_x1] = np.array([stretch / 2, 0, 0]) | ||
bcond_disp[wall_y0] = R[wall_y0, 0:1] / maxR[1] * np.array([[stretch / 2, 0, 0]]) | ||
bcond_disp[wall_y1] = R[wall_y1, 0:1] / maxR[1] * np.array([[stretch / 2, 0, 0]]) | ||
bcond_disp[wall_z0] = R[wall_z0, 0:1] / maxR[1] * np.array([[stretch / 2, 0, 0]]) | ||
U = R[:, 0:1] / maxR[1] * np.array([[stretch / 2, 0, 0]]) | ||
M.setNodes(R) | ||
M.setTetrahedra(T) | ||
M.setBoundaryCondition(bcond_disp, bcond_force) | ||
M.setInitialDisplacements(U) | ||
M.setMaterialModel(SemiAffineFiberMaterial(1449, 0.00215, 0.032, 0.055)) | ||
#M.plot(["U_fixed", "f_target"]) | ||
M.solve_boundarycondition(verbose=True) | ||
|
||
def getStretch(stretch): | ||
bcond_disp = np.zeros_like(R) * np.nan | ||
bcond_force = np.zeros_like(R) | ||
minR = np.min(R, axis=0) | ||
maxR = np.max(R, axis=0) | ||
width = 0.5e-6 | ||
wall_x0 = (R[:, 0] < minR[0] + width) | ||
wall_x1 = (R[:, 0] > maxR[0] - width) | ||
wall_y0 = (R[:, 1] < minR[1] + width) | ||
wall_y1 = (R[:, 1] > maxR[1] - width) | ||
wall_z0 = (R[:, 2] < minR[2] + width) | ||
bcond_force[wall_x0 | wall_x1] = np.nan | ||
bcond_force[wall_y0 | wall_y1] = np.nan | ||
bcond_force[wall_z0] = np.nan | ||
bcond_disp[wall_x0] = np.array([-stretch / 2, 0, 0]) | ||
bcond_disp[wall_x1] = np.array([stretch / 2, 0, 0]) | ||
bcond_disp[wall_y0] = R[wall_y0, 0:1] / maxR[1] * np.array([[stretch / 2, 0, 0]]) | ||
bcond_disp[wall_y1] = R[wall_y1, 0:1] / maxR[1] * np.array([[stretch / 2, 0, 0]]) | ||
bcond_disp[wall_z0] = R[wall_z0, 0:1] / maxR[1] * np.array([[stretch / 2, 0, 0]]) | ||
U = R[:, 0:1] / maxR[1] * np.array([[stretch / 2, 0, 0]]) | ||
M.setBoundaryCondition(bcond_disp, bcond_force) | ||
M.setInitialDisplacements(U) | ||
M.solve_boundarycondition() | ||
return M.U[getNearestNode(R, [0, 0, maxR[2]]), 2] / maxR[2] | ||
|
||
for i in np.arange(0, 0.1, 0.01): | ||
print(i, getStretch(i*Wx)) | ||
|
||
data = np.array([ | ||
[0.00, 9.639731946956672e-17], | ||
[0.01, -0.0028876824941188994], | ||
[0.02, -0.006793464310006459], | ||
[0.03, -0.011653808339864761], | ||
[0.04, -0.02191106208313836], | ||
[0.05, -0.029733408435941897], | ||
[0.06, -0.04325336411038499], | ||
[0.07, -0.06080549279004046], | ||
[0.08, -0.08136238513958438], | ||
[0.09, -0.09579808047033185], | ||
]) | ||
from saenopy import macro | ||
lambda_h = np.arange(1-0.05, 1+0.07, 0.01) | ||
lambda_v = np.arange(0, 1.1, 0.001) | ||
|
||
x, y = macro.getStretchThinning(lambda_h, lambda_v, M.material_model) | ||
plt.plot(x, y, lw=3, label="model") | ||
plt.plot(data[:, 0]+1, data[:, 1]+1) | ||
|
||
def getBorder(R): | ||
minR = np.min(R, axis=0) | ||
maxR = np.max(R, axis=0) | ||
width = 0.5e-6 | ||
border = (R[:, 0] < minR[0] + width) | (R[:, 0] > maxR[0] - width) | \ | ||
(R[:, 1] < minR[1] + width) | (R[:, 1] > maxR[1] - width) | \ | ||
(R[:, 2] < minR[2] + width) | (R[:, 2] > maxR[2] - width) | ||
return border | ||
|
||
def getNearestNode(R, point): | ||
return np.argmin(np.linalg.norm(R-np.array(point)[None, :], axis=1)) | ||
|
||
def calculateDipole(size): | ||
M = saenopy.load( | ||
r"\\131.188.117.96\biophysDS\dboehringer\Platte_4\Software\2-integrate-piv-saenopy\Eval\4-tumor-cell-piv\cell10\testdeformations_win20.npz") | ||
M.R -= np.mean(M.R, axis=0) | ||
print("get scaled mesh", (np.max(M.R, axis=0) - np.min(M.R, axis=0)) * 1e6) | ||
|
||
voxel_size = 7.5e-6 | ||
amplitude = 100e-9 | ||
radius = 50e-6 | ||
|
||
M.setMaterialModel(SemiAffineFiberMaterial(1645, 0.0008, 0.0075, 0.033)) | ||
|
||
xmax, ymax, zmax = np.max(M.R, axis=0) | ||
nx, ny, nz = (np.max(M.R, axis=0) / voxel_size).astype(np.int) | ||
|
||
points, cells = getScaledMesh(size * 1e-6, 100e-6, (np.max(M.R, axis=0) - np.min(M.R, axis=0)) / 2, [0, 0, 0], | ||
0.2) | ||
border = getBorder(points) | ||
M.setNodes(points) | ||
M.setTetrahedra(cells) | ||
bcond_disp = np.zeros_like(M.U) * np.nan | ||
bcond_disp[border] = 0 | ||
bcond_force = np.zeros_like(M.U) | ||
bcond_force[border] = np.nan | ||
distance_from_point = np.linalg.norm(M.R, np.array([-radius, 0, 0]), axis=-1) | ||
bcond_force[getNearestNode(M.R, [-radius, 0, 0])] = [-amplitude, 0, 0] | ||
bcond_force[getNearestNode(M.R, [radius, 0, 0])] = [amplitude, 0, 0] | ||
M.setBoundaryCondition(bcond_disp, bcond_force) | ||
M.solve_boundarycondition(verbose=True) | ||
M.save(r"dipole_boundary.npz") | ||
|
||
def addBlurredForces(point, force, blur, R): | ||
point = np.array(point) | ||
force = np.array(force) | ||
distance_from_point = np.linalg.norm(R - point[None, :], axis=-1) | ||
factor = np.exp(-(distance_from_point)**2/(2*blur**2)) | ||
factor = factor/np.sum(factor) | ||
return factor[:, None] * force[None, :] | ||
|
||
def dipole(radius, amplitude, blur, bcond_force, R): | ||
bcond_force += addBlurredForces([-radius, 0, 0], [-amplitude, 0, 0], blur, R) | ||
bcond_force += addBlurredForces([radius, 0, 0], [amplitude, 0, 0], blur, R) | ||
|
||
def quadrupole(radius, amplitude, blur, bcond_force, R): | ||
points = [ | ||
[0, 0, 3 / np.sqrt(6)], | ||
[0, 2 / np.sqrt(3), -1 / np.sqrt(6)], | ||
[+1, -1 / np.sqrt(3), -1 / np.sqrt(6)], | ||
[-1, -1 / np.sqrt(3), -1 / np.sqrt(6)], | ||
] | ||
force_points = np.array(points) * np.sqrt(2 / 3) * radius | ||
for p in force_points: | ||
bcond_force += addBlurredForces(p, p / np.linalg.norm(p) * amplitude, blur, R) | ||
|
||
def calculateArtificialCell(elementsize=4e-6, amplitude=20e-9, distance=10e-6, stacksize=150e-6, blur=3e-6, type="dipole", plot=False): | ||
radius = distance / 2 | ||
M = saenopy.Solver() | ||
|
||
# biomatrix 2020 | ||
M.setMaterialModel(SemiAffineFiberMaterial(1449, 0.00215, 0.032, 0.055)) | ||
|
||
# points, cells = getScaledMesh(size * 1e-6, 100e-6, (np.max(M.R, axis=0) - np.min(M.R, axis=0)) / 2, [0, 0, 0], 0.2) | ||
points, cells = getScaledMesh(elementsize, 100e-6, stacksize / 2, [0, 0, 0], 0.2) | ||
|
||
border = getBorder(points) | ||
M.setNodes(points) | ||
M.setTetrahedra(cells) | ||
bcond_disp = np.zeros_like(M.U) * np.nan | ||
bcond_disp[border] = 0 | ||
bcond_force = np.zeros_like(M.U) | ||
bcond_force[border] = np.nan | ||
# set the two forces | ||
if type == "dipole": | ||
dipole(radius, amplitude, blur, bcond_force, M.R) | ||
elif type == "quadrupole": | ||
quadrupole(radius, amplitude, blur, bcond_force, M.R) | ||
else: | ||
raise ValueError(f"Unknown type {type}, known types dipole, quadrupole.") | ||
|
||
M.setBoundaryCondition(bcond_disp, bcond_force) | ||
|
||
if plot is True: | ||
M.plot(["U_fixed", "f_target"]) | ||
# solve | ||
M.solve_boundarycondition(verbose=True) | ||
# save | ||
M.save(rf"Amp{amplitude}_dist{distance}.npz") | ||
|
||
times = [] | ||
for size in [9]: | ||
calculateArtificialCell(type="quadrupole", plot=True) | ||
break | ||
#for alpha in [9]: | ||
#for alpha in np.arange(6, 10, 1 / 3): | ||
for alpha in [np.arange(6, 10, 1 / 3)[-1]]: | ||
for noise in [0.5]: | ||
#for cut in np.arange(1, 0, -0.1): | ||
M0 = saenopy.load("dipole_boundary.npz") | ||
M = saenopy.Solver() | ||
border = getBorder(M0.R) | ||
M.setNodes(M0.R) | ||
M.setTetrahedra(M0.T) | ||
M.setTargetDisplacements(M0.U+np.random.normal(0, noise*1e-6, M0.U.shape))#, ~border) | ||
print("set material") | ||
M.setMaterialModel(SemiAffineFiberMaterial(1645, 0.0008, 0.0075, 0.033)) | ||
print("regluarlize") | ||
t = time.time() | ||
x = M.solve_regularized(alpha=10**float(alpha), verbose=True, i_max=100) | ||
times.append([size, alpha, time.time()-t]) | ||
print("save") | ||
M.save(f"regularized_noborder_noise{noise}_mesh{size}um_{alpha:5.2f}.npz") | ||
|
||
np.savetxt("times.txt", times) | ||
exit() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -3,4 +3,4 @@ | |
from .save import * | ||
from .solver import Solver, load, save | ||
|
||
__version__ = '0.7.2' | ||
__version__ = '0.7.3' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
import imageio | ||
import numpy as np | ||
|
||
|
||
writer = imageio.get_writer("stack.mp4", quality=5) | ||
|
||
for i in range(0, 500, 2): | ||
print(i) | ||
imB0 = imageio.imread(fr"\\131.188.117.96\biophysDS\dboehringer\Platte_4\Measurements_NK_TFM\single-cell-tfm-tom-paper\20170914_A172_rep1\Before\Mark_and_Find_001_Pos001_S001_z{i:03d}_ch00.tif") | ||
imB1 = imageio.imread(fr"\\131.188.117.96\biophysDS\dboehringer\Platte_4\Measurements_NK_TFM\single-cell-tfm-tom-paper\20170914_A172_rep1\Before\Mark_and_Find_001_Pos001_S001_z{i:03d}_ch01.tif") | ||
imA0 = imageio.imread(fr"\\131.188.117.96\biophysDS\dboehringer\Platte_4\Measurements_NK_TFM\single-cell-tfm-tom-paper\20170914_A172_rep1\After\Mark_and_Find_001_Pos001_S001_z{i:03d}_ch00.tif") | ||
imA1 = imageio.imread(fr"\\131.188.117.96\biophysDS\dboehringer\Platte_4\Measurements_NK_TFM\single-cell-tfm-tom-paper\20170914_A172_rep1\After\Mark_and_Find_001_Pos001_S001_z{i:03d}_ch01.tif") | ||
imB = np.hstack((imB0, imB1)) | ||
imA = np.hstack((imA0, imA1)) | ||
im = np.vstack((imB, imA)) | ||
print(im.shape, im.dtype) | ||
im[-int(i/500*im.shape[0]):, -10:] = 0 | ||
writer.append_data(im[::2, ::2]) | ||
|
||
writer.close() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from matplotlib.widgets import Slider, Button, RadioButtons | ||
|
||
from saenopy.materials import SemiAffineFiberMaterial | ||
from saenopy.macro import getShearRheometerStress | ||
import saenopy | ||
material = SemiAffineFiberMaterial(900, 0.0004, 0.0075, 0.033) | ||
|
||
fig, ax = plt.subplots() | ||
plt.subplots_adjust(left=0.25, bottom=0.40) | ||
|
||
gamma = np.arange(-0.01, 0.03, 0.0001) | ||
M = saenopy.Solver() | ||
M.setBeams() | ||
#x, y = getShearRheometerStress(gamma, material, M.s) | ||
y = material.stiffness(gamma) | ||
|
||
l, = plt.plot(gamma, y, lw=2) | ||
ax.margins(x=0) | ||
plt.ylabel("stiffness") | ||
plt.xlabel("strain") | ||
|
||
axcolor = 'lightgoldenrodyellow' | ||
axfreq = plt.axes([0.25, 0.1, 0.65, 0.03], facecolor=axcolor) | ||
axamp = plt.axes([0.25, 0.15, 0.65, 0.03], facecolor=axcolor) | ||
axlambdas = plt.axes([0.25, 0.20, 0.65, 0.03], facecolor=axcolor) | ||
axds = plt.axes([0.25, 0.25, 0.65, 0.03], facecolor=axcolor) | ||
|
||
sfreq = Slider(axfreq, 'k', 0, 1200.0, valinit=900, valstep=100) | ||
samp = Slider(axamp, '$d_0$', 0.0, 0.1, valinit=0.0004) | ||
slambdas = Slider(axlambdas, '$\lambda_s$', 0.0, 0.03, valinit=0.0075) | ||
sds = Slider(axds, '$d_s$', 0.0, 0.1, valinit=0.033) | ||
|
||
|
||
|
||
def update(val): | ||
d_0 = samp.val | ||
k = sfreq.val | ||
lamda_s = slambdas.val | ||
d_s = sds.val | ||
material = SemiAffineFiberMaterial(k, d_0, lamda_s, d_s) | ||
y = material.stiffness(gamma) | ||
l.set_ydata(y) | ||
fig.canvas.draw_idle() | ||
|
||
|
||
sfreq.on_changed(update) | ||
samp.on_changed(update) | ||
slambdas.on_changed(update) | ||
sds.on_changed(update) | ||
|
||
|
||
plt.show() |
Oops, something went wrong.