Skip to content

resplab/cumulcalib

Repository files navigation

cumulcalib

R-CMD-check

The goal of cumulcalib is to enable the use of the assessment of prediction model calibration using the cumulative calibration methodology. For more information, please refer to the original publication (arxiv version: https://arxiv.org/abs/2307.09713). The package also comes with a tutorial, which you can view after installing the package as

vignette("tutorial", package="cumulcalib")

Installation

You can install the development version of cumulcalib from GitHub with:

# install.packages("remotes") #this package is necessary to connect to github
remotes::install_github("resplab/cumulcalib")

Example

library(cumulcalib)

set.seed(1)
p <- rbeta(1000, 1,5)
y <- rbinom(1000,1,p)

res <- cumulcalib(y, p)

summary(res)
#> C_n (mean calibration error): 0.00532270104567871
#> C* (maximum absolute cumulative calibration error): 0.00740996981029672
#> Method: Two-part Brownian Bridge (BB)
#> S_n (Z score for mean calibration error) 0.489295496431201
#> B* (test statistic for maximum absolute bridged calibration error): 0.904915434767163
#> Component-wise p-values: mean calibration=0.624632509005787 | Distance (bridged)=0.385979705481866
#> Combined p-value (Fisher's method): 0.584068794836004
#> Location of maximum drift: 812  | time value: 0.632911942275094  | predictor value: 0.28191196504736
plot(res, draw_sig=F)

About

No description, website, or topics provided.

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Packages

No packages published