|
| 1 | +import os |
| 2 | +import torch |
| 3 | + |
| 4 | +from models.autoencoder import Autoencoder |
| 5 | +from utils.dataloader import get_dataloader |
| 6 | +from utils.trainer import train_autoencoder, visualize_reconstructions, save_model, load_model, evaluate_autoencoder |
| 7 | +from settings import settings |
| 8 | + |
| 9 | + |
| 10 | +def main(load_trained_model): |
| 11 | + BATCH_SIZE = 32 |
| 12 | + INPUT_DIM = 3 * 64 * 64 |
| 13 | + ENCODING_DIM = 12 |
| 14 | + NUM_EPOCHS = 1000 |
| 15 | + |
| 16 | + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 17 | + |
| 18 | + dataloader = get_dataloader(settings.DATA_PATH, BATCH_SIZE) |
| 19 | + model = Autoencoder(INPUT_DIM, ENCODING_DIM).to(device) |
| 20 | + |
| 21 | + if load_trained_model: |
| 22 | + trained_model = load_model(model, settings.PATH_SAVED_MODEL, device=device) |
| 23 | + else: |
| 24 | + trained_model = train_autoencoder(model, dataloader, NUM_EPOCHS, device=device) |
| 25 | + |
| 26 | + valid_dataloader = get_dataloader(settings.VALID_DATA_PATH, BATCH_SIZE) |
| 27 | + |
| 28 | + save_path = os.path.join('./', settings.PATH_SAVED_MODEL) |
| 29 | + save_model(trained_model, save_path) |
| 30 | + print(f"Model saved to {save_path}") |
| 31 | + |
| 32 | + avg_valid_loss = evaluate_autoencoder(trained_model, valid_dataloader, device) |
| 33 | + print(f"Average validation loss: {avg_valid_loss:.4f}") |
| 34 | + |
| 35 | + visualize_reconstructions(trained_model, valid_dataloader, num_samples=10, device=device) |
| 36 | + |
| 37 | + |
| 38 | +if __name__ == "__main__": |
| 39 | + main(False) |
0 commit comments