|
| 1 | +import os |
| 2 | +import torch |
| 3 | +import torch.optim as optim |
| 4 | +import torch.nn as nn |
| 5 | +from torchvision import transforms |
| 6 | +from torchvision.utils import save_image, make_grid |
| 7 | +import matplotlib.pyplot as plt |
| 8 | +from PIL import Image |
| 9 | + |
| 10 | + |
| 11 | +def train_autoencoder(model, dataloader, num_epochs=5, learning_rate=0.001, device='cpu'): |
| 12 | + criterion = nn.MSELoss() |
| 13 | + optimizer = optim.Adam(model.parameters(), lr=learning_rate) |
| 14 | + |
| 15 | + for epoch in range(num_epochs): |
| 16 | + for data in dataloader: |
| 17 | + img = data.to(device) |
| 18 | + img = img.view(img.size(0), -1) |
| 19 | + output = model(img) |
| 20 | + loss = criterion(output, img) |
| 21 | + |
| 22 | + optimizer.zero_grad() |
| 23 | + loss.backward() |
| 24 | + optimizer.step() |
| 25 | + |
| 26 | + print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}') |
| 27 | + |
| 28 | + return model |
| 29 | + |
| 30 | + |
| 31 | +def visualize_reconstructions(model, dataloader, num_samples=10, device='cpu', save_path="./samples"): |
| 32 | + model.eval() |
| 33 | + samples = next(iter(dataloader)) |
| 34 | + samples = samples[:num_samples].to(device) |
| 35 | + samples = samples.view(samples.size(0), -1) |
| 36 | + reconstructions = model(samples) |
| 37 | + |
| 38 | + samples = samples.view(-1, 3, 64, 64) |
| 39 | + reconstructions = reconstructions.view(-1, 3, 64, 64) |
| 40 | + |
| 41 | + # Combine as amostras e reconstruções em uma única grade |
| 42 | + combined = torch.cat([samples, reconstructions], dim=0) |
| 43 | + grid_img = make_grid(combined, nrow=num_samples) |
| 44 | + |
| 45 | + # Visualização usando Matplotlib |
| 46 | + plt.imshow(grid_img.permute(1, 2, 0).cpu().detach().numpy()) |
| 47 | + plt.axis('off') |
| 48 | + plt.show() |
| 49 | + |
| 50 | + if not os.path.exists(save_path): |
| 51 | + os.makedirs(save_path) |
| 52 | + save_image(grid_img, os.path.join(save_path, 'combined_samples.png')) |
| 53 | + |
| 54 | + |
| 55 | +def save_model(model, path): |
| 56 | + torch.save(model.state_dict(), path) |
| 57 | + |
| 58 | + |
| 59 | +def load_model(model, path, device): |
| 60 | + model.load_state_dict(torch.load(path, map_location=device)) |
| 61 | + model.eval() |
| 62 | + return model |
| 63 | + |
| 64 | + |
| 65 | +def evaluate_autoencoder(model, dataloader, device): |
| 66 | + model.eval() |
| 67 | + total_loss = 0 |
| 68 | + criterion = nn.MSELoss() |
| 69 | + with torch.no_grad(): |
| 70 | + for data in dataloader: |
| 71 | + img = data.to(device) |
| 72 | + img = img.view(img.size(0), -1) |
| 73 | + output = model(img) |
| 74 | + loss = criterion(output, img) |
| 75 | + total_loss += loss.item() |
| 76 | + return total_loss / len(dataloader) |
0 commit comments