Skip to content

《AWM-SAM: A SAM-Enhanced Dual-Stream Network with Text-Guided Asymmetric Wavelet Modulation for Referring Remote Sensing Image Segmentation》code

Notifications You must be signed in to change notification settings

redoriental/textguidedwaveletnetmaster

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 

Repository files navigation

textguidedwaveletnetmaster

《AWM-SAM: A SAM-Enhanced Dual-Stream Network with Text-Guided Asymmetric Wavelet Modulation for Referring Remote Sensing Image Segmentation》code

environment PyTorch 2.0.0 Python 3.8(ubuntu20.04) CUDA 11.8 GPU vGPU-32GB(32GB) * 1 CPU 10 vCPU Intel(R) Xeon(R) Gold 6459C

mkdir ./pretrained_weights Place sam_vit_b_01ec64.pth(https://huggingface.co/datasets/Gourieff/ReActor/blob/main/models/sams/sam_vit_b_01ec64.pth) in the pretrained_weights folder.

Download pre-trained classification weights of the Swin Transformer, and put the pth file in ./pretrained_weights. These weights are needed for training to initialize the visual encoder. 3. Download BERT weights from HuggingFace’s Transformer library, and put it in the root directory.

The RefSegRS , RRSIS-D datasets can be downloaded from the link https://github.com/Shaosifan/FIANet.

We use one GPU to train our model. For training on RefSegRS dataset: python train.py --dataset refsegrs --model_id FIANet --epochs 60 --lr 5e-5 --num_tmem 1
For training on RRSIS-D dataset: python train.py --dataset rrsisd --model_id FIANet --epochs 40 --lr 3e-5 --num_tmem 3

Test for RefSegRS dataset: python test.py --swin_type base --dataset refsegrs --resume ./your_checkpoints_path --split test --window12 --img_size 480 --num_tmem 1 Test for RRSIS-D dataset: python test.py --swin_type base --dataset rrsisd --resume ./your_checkpoints_path --split test --window12 --img_size 480 --num_tmem 3

Code in this repository is built on FIANet

About

《AWM-SAM: A SAM-Enhanced Dual-Stream Network with Text-Guided Asymmetric Wavelet Modulation for Referring Remote Sensing Image Segmentation》code

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published