-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
410 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,369 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"'/Users/dattarij/Documents/AutoMLPipe-BC-main/TestData_CHD'" | ||
] | ||
}, | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"%pwd" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"import numpy as np\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df = pd.read_csv('CHOP_features_1104.txt', delim_whitespace=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"(810, 184527)" | ||
] | ||
}, | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"df.shape" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df.insert(1, \"InstanceID\", [i for i in range(len(df))])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"4401403\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"result = df.isna().sum().sum()\n", | ||
"print(result)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"0.029447348432465336\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"cells = 810*184527\n", | ||
"naPerc = result/float(cells)\n", | ||
"print(naPerc)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"<bound method NDFrame.head of PHENOTYPE InstanceID rs3131972_A rs6604966_C rs9442373_C \\\n", | ||
"0 1 0 0.0 1.0 1 \n", | ||
"1 1 1 0.0 0.0 0 \n", | ||
"2 1 2 0.0 0.0 1 \n", | ||
"3 1 3 0.0 0.0 0 \n", | ||
"4 1 4 1.0 0.0 1 \n", | ||
".. ... ... ... ... ... \n", | ||
"805 2 805 0.0 0.0 1 \n", | ||
"806 2 806 0.0 1.0 1 \n", | ||
"807 2 807 0.0 0.0 0 \n", | ||
"808 2 808 0.0 0.0 2 \n", | ||
"809 2 809 1.0 1.0 1 \n", | ||
"\n", | ||
" rs9442380_T rs4081334_G rs2887286_C rs111452679_A rs11260577_C ... \\\n", | ||
"0 0 0.0 0 1.0 0.0 ... \n", | ||
"1 0 0.0 0 0.0 0.0 ... \n", | ||
"2 0 0.0 0 0.0 0.0 ... \n", | ||
"3 0 0.0 1 1.0 0.0 ... \n", | ||
"4 0 0.0 0 0.0 0.0 ... \n", | ||
".. ... ... ... ... ... ... \n", | ||
"805 0 0.0 0 0.0 0.0 ... \n", | ||
"806 0 0.0 0 0.0 0.0 ... \n", | ||
"807 0 0.0 0 0.0 0.0 ... \n", | ||
"808 0 0.0 0 1.0 1.0 ... \n", | ||
"809 1 1.0 1 0.0 1.0 ... \n", | ||
"\n", | ||
" rs5770807_C rs78309468_A rs134774_A rs9628185_C rs9616816_A \\\n", | ||
"0 1.0 0.0 1.0 2.0 0 \n", | ||
"1 0.0 0.0 1.0 0.0 0 \n", | ||
"2 1.0 1.0 0.0 0.0 0 \n", | ||
"3 1.0 0.0 0.0 1.0 1 \n", | ||
"4 0.0 0.0 0.0 1.0 0 \n", | ||
".. ... ... ... ... ... \n", | ||
"805 1.0 0.0 0.0 1.0 2 \n", | ||
"806 1.0 0.0 0.0 1.0 1 \n", | ||
"807 1.0 0.0 1.0 0.0 0 \n", | ||
"808 2.0 0.0 0.0 NaN 1 \n", | ||
"809 1.0 0.0 0.0 0.0 0 \n", | ||
"\n", | ||
" rs5770988_A rs5770821_G rs715586_T rs756638_A rs3810648_G \n", | ||
"0 0.0 1.0 0 2 0 \n", | ||
"1 1.0 1.0 0 0 0 \n", | ||
"2 0.0 0.0 0 1 0 \n", | ||
"3 0.0 NaN 2 0 0 \n", | ||
"4 1.0 NaN 0 1 0 \n", | ||
".. ... ... ... ... ... \n", | ||
"805 0.0 2.0 1 0 0 \n", | ||
"806 0.0 1.0 0 1 1 \n", | ||
"807 NaN 1.0 0 0 0 \n", | ||
"808 0.0 NaN 2 0 0 \n", | ||
"809 0.0 2.0 0 0 0 \n", | ||
"\n", | ||
"[810 rows x 184528 columns]>" | ||
] | ||
}, | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"df.head" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"<bound method NDFrame.head of PHENOTYPE InstanceID rs3131972_A rs6604966_C rs9442373_C rs9442380_T \\\n", | ||
"0 1 0 0 1 1 0 \n", | ||
"1 1 1 0 0 0 0 \n", | ||
"2 1 2 0 0 1 0 \n", | ||
"3 1 3 0 0 0 0 \n", | ||
"4 1 4 1 0 1 0 \n", | ||
".. ... ... ... ... ... ... \n", | ||
"805 2 805 0 0 1 0 \n", | ||
"806 2 806 0 1 1 0 \n", | ||
"807 2 807 0 0 0 0 \n", | ||
"808 2 808 0 0 2 0 \n", | ||
"809 2 809 1 1 1 1 \n", | ||
"\n", | ||
" rs4081334_G rs2887286_C rs111452679_A rs11260577_C ... rs5770807_C \\\n", | ||
"0 0 0 1 0 ... 1 \n", | ||
"1 0 0 0 0 ... 0 \n", | ||
"2 0 0 0 0 ... 1 \n", | ||
"3 0 1 1 0 ... 1 \n", | ||
"4 0 0 0 0 ... 0 \n", | ||
".. ... ... ... ... ... ... \n", | ||
"805 0 0 0 0 ... 1 \n", | ||
"806 0 0 0 0 ... 1 \n", | ||
"807 0 0 0 0 ... 1 \n", | ||
"808 0 0 1 1 ... 2 \n", | ||
"809 1 1 0 1 ... 1 \n", | ||
"\n", | ||
" rs78309468_A rs134774_A rs9628185_C rs9616816_A rs5770988_A rs5770821_G \\\n", | ||
"0 0 1 2 0 0 1 \n", | ||
"1 0 1 0 0 1 1 \n", | ||
"2 1 0 0 0 0 0 \n", | ||
"3 0 0 1 1 0 NaN \n", | ||
"4 0 0 1 0 1 NaN \n", | ||
".. ... ... ... ... ... ... \n", | ||
"805 0 0 1 2 0 2 \n", | ||
"806 0 0 1 1 0 1 \n", | ||
"807 0 1 0 0 NaN 1 \n", | ||
"808 0 0 NaN 1 0 NaN \n", | ||
"809 0 0 0 0 0 2 \n", | ||
"\n", | ||
" rs715586_T rs756638_A rs3810648_G \n", | ||
"0 0 2 0 \n", | ||
"1 0 0 0 \n", | ||
"2 0 1 0 \n", | ||
"3 2 0 0 \n", | ||
"4 0 1 0 \n", | ||
".. ... ... ... \n", | ||
"805 1 0 0 \n", | ||
"806 0 1 1 \n", | ||
"807 0 0 0 \n", | ||
"808 2 0 0 \n", | ||
"809 0 0 0 \n", | ||
"\n", | ||
"[810 rows x 184528 columns]>" | ||
] | ||
}, | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"df2 = df.fillna(-1)\n", | ||
"df2 = df2.astype(int)\n", | ||
"df2 = df2.astype(str)\n", | ||
"df2 = df2.replace('-1', np.nan)\n", | ||
"df2.head" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 23, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"<bound method NDFrame.head of Class InstanceID rs3131972_A rs6604966_C rs9442373_C rs9442380_T \\\n", | ||
"0 1 0 0 1 1 0 \n", | ||
"1 1 1 0 0 0 0 \n", | ||
"2 1 2 0 0 1 0 \n", | ||
"3 1 3 0 0 0 0 \n", | ||
"4 1 4 1 0 1 0 \n", | ||
".. ... ... ... ... ... ... \n", | ||
"805 2 805 0 0 1 0 \n", | ||
"806 2 806 0 1 1 0 \n", | ||
"807 2 807 0 0 0 0 \n", | ||
"808 2 808 0 0 2 0 \n", | ||
"809 2 809 1 1 1 1 \n", | ||
"\n", | ||
" rs4081334_G rs2887286_C rs111452679_A rs11260577_C ... rs5770807_C \\\n", | ||
"0 0 0 1 0 ... 1 \n", | ||
"1 0 0 0 0 ... 0 \n", | ||
"2 0 0 0 0 ... 1 \n", | ||
"3 0 1 1 0 ... 1 \n", | ||
"4 0 0 0 0 ... 0 \n", | ||
".. ... ... ... ... ... ... \n", | ||
"805 0 0 0 0 ... 1 \n", | ||
"806 0 0 0 0 ... 1 \n", | ||
"807 0 0 0 0 ... 1 \n", | ||
"808 0 0 1 1 ... 2 \n", | ||
"809 1 1 0 1 ... 1 \n", | ||
"\n", | ||
" rs78309468_A rs134774_A rs9628185_C rs9616816_A rs5770988_A rs5770821_G \\\n", | ||
"0 0 1 2 0 0 1 \n", | ||
"1 0 1 0 0 1 1 \n", | ||
"2 1 0 0 0 0 0 \n", | ||
"3 0 0 1 1 0 NaN \n", | ||
"4 0 0 1 0 1 NaN \n", | ||
".. ... ... ... ... ... ... \n", | ||
"805 0 0 1 2 0 2 \n", | ||
"806 0 0 1 1 0 1 \n", | ||
"807 0 1 0 0 NaN 1 \n", | ||
"808 0 0 NaN 1 0 NaN \n", | ||
"809 0 0 0 0 0 2 \n", | ||
"\n", | ||
" rs715586_T rs756638_A rs3810648_G \n", | ||
"0 0 2 0 \n", | ||
"1 0 0 0 \n", | ||
"2 0 1 0 \n", | ||
"3 2 0 0 \n", | ||
"4 0 1 0 \n", | ||
".. ... ... ... \n", | ||
"805 1 0 0 \n", | ||
"806 0 1 1 \n", | ||
"807 0 0 0 \n", | ||
"808 2 0 0 \n", | ||
"809 0 0 0 \n", | ||
"\n", | ||
"[810 rows x 184528 columns]>" | ||
] | ||
}, | ||
"execution_count": 23, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"df2.rename(columns={\"PHENOTYPE\": \"Class\"}, inplace=True)\n", | ||
"df2.head" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df2.to_csv('CHOP_features_1104_PHENOTYPE.txt', sep='\\t', index=False)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.8" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
Oops, something went wrong.