Skip to content

py-faster-rcnn build Issue. In the making process. (make -j8 && make pycaffe)  #509

Closed
@yuanzhenjie

Description

Could anybody help fix it. thanks a lot.

I have replaced the cudnn file with the new version
cuda8.0 cudnn-V5

[root@dl-gpu caffe-fast-rcnn]# make -j8 && make pycaffe 
CXX/LD -o .build_release/tools/caffe.bin
CXX/LD -o .build_release/tools/extract_features.bin
CXX/LD -o .build_release/examples/cpp_classification/classification.bin
/usr/bin/ld: warning: libhdf5_hl.so.8, needed by /usr/local/lib/libcaffe.so, may conflict with libhdf5_hl.so.10
/usr/bin/ld: warning: libhdf5.so.8, needed by /usr/local/lib/libcaffe.so, may conflict with libhdf5.so.10
.build_release/tools/extract_features.o:在函数‘int feature_extraction_pipeline<float>(int, char**)’中:
extract_features.cpp:(.text._Z27feature_extraction_pipelineIfEiiPPc[_Z27feature_extraction_pipelineIfEiiPPc]+0xe6):对‘caffe::Net<float>::Net(std::string const&, caffe::Phase, caffe::Net<float> const*)’未定义的引用
collect2: 错误:ld 返回 1
make: *** [.build_release/tools/extract_features.bin] 错误 1
make: *** 正在等待未完成的任务....
/usr/bin/ld: warning: libhdf5_hl.so.8, needed by /usr/local/lib/libcaffe.so, may conflict with libhdf5_hl.so.10
/usr/bin/ld: warning: libhdf5.so.8, needed by /usr/local/lib/libcaffe.so, may conflict with libhdf5.so.10
.build_release/examples/cpp_classification/classification.o:在函数‘Classifier::Classifier(std::string const&, std::string const&, std::string const&, std::string const&)’中:
classification.cpp:(.text+0x29a1):对‘caffe:/:Net<float>:usr:Net/bin(/ldstd::: warningstring : const&, libhdf5_hl.so.8,caffe::Phase needed , bycaffe::Net /<floatusr/>local/ const*)lib/?libcaffe.so,? may未 conflict? with?? ??libhdf5_hl.so.10
/的usr/?bin??/ld?: ?
warning: libhdf5.so.8, needed by /usr/local/lib/libcaffe.so, may conflict withcollect2: 错误:ld 返回 1
 libhdf5.so.10
.build_release/tools/caffe.o:在函数‘test()’中:
caffe.cpp:(.text+0xdad):对‘caffe::Net<float>::Net(std::string const&, caffe::Phase, caffe::Netmake: <*** [.build_release/examples/cpp_classification/classification.bin] 错误 1
float> const*)’未定义的引用
.build_release/tools/caffe.o:在函数‘train()’中:
caffe.cpp:(.text+0x1a8f):对‘caffe::P2PSync<float>::P2PSync(boost::shared_ptr<caffe::Solver<float> >, caffe::P2PSync<float>*, caffe::SolverParameter const&)’未定义的引用
caffe.cpp:(.text+0x1aae):对‘caffe::P2PSync<float>::run(std::vector<int, std::allocator<int> > const&)’未定义的引用
caffe.cpp:(.text+0x1ab6):对‘caffe::P2PSync<float>::~P2PSync()’未定义的引用
caffe.cpp:(.text+0x203f):对‘caffe::P2PSync<float>::~P2PSync()’未定义的引用
caffe.cpp:(.text+0x20e3):对‘caffe::P2PSync<float>::~P2PSync()’未定义的引用
.build_release/tools/caffe.o:在函数‘time()’中:
caffe.cpp:(.text+0x22be):对‘caffe::Net<float>::Net(std::string const&, caffe::Phase, caffe::Net<float> const*)’未定义的引用
caffe.cpp:(.text+0x25cc):对‘caffe::Layer<float>::Lock()’未定义的引用
caffe.cpp:(.text+0x26d1):对‘caffe::Layer<float>::Unlock()’未定义的引用
collect2: 错误 error :ld 返回 1
make: *** [.build_release/tools/caffe.bin] 错误 1

the Makefile.config file

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
 USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#       You should not set this flag if you will be reading LMDBs with any
#       possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
# OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
                -gencode arch=compute_20,code=sm_21 \
                -gencode arch=compute_30,code=sm_30 \
                -gencode arch=compute_35,code=sm_35 \
                -gencode arch=compute_50,code=sm_50 \
                -gencode arch=compute_52,code=sm_52 \
                -gencode arch=compute_60,code=sm_60 \
                -gencode arch=compute_61,code=sm_61 \
                -gencode arch=compute_61,code=compute_61

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
 BLAS_INCLUDE := /usr/include/atlas
#/path/to/your/blas
 BLAS_LIB := /usr/lib64/atlas
#/path/to/your/blas
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
#PYTHON_INCLUDE := /usr/include/python2.7 \
                /usr/lib64/python2.7/site-packages/numpy/core/include/numpy/
#/usr/lib64/python2.7/site-packages/numpy/core/include/numpy/
#/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
ANACONDA_HOME := /data/software/anaconda2
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
                  $(ANACONDA_HOME)/include/python2.7 \
                  $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
#PYTHON_LIB := /usr/lib64
#/usr/lib
 PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
 WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

Activity

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions