Closed
Description
Could anybody help fix it. thanks a lot.
I have replaced the cudnn file with the new version
cuda8.0 cudnn-V5
[root@dl-gpu caffe-fast-rcnn]# make -j8 && make pycaffe
CXX/LD -o .build_release/tools/caffe.bin
CXX/LD -o .build_release/tools/extract_features.bin
CXX/LD -o .build_release/examples/cpp_classification/classification.bin
/usr/bin/ld: warning: libhdf5_hl.so.8, needed by /usr/local/lib/libcaffe.so, may conflict with libhdf5_hl.so.10
/usr/bin/ld: warning: libhdf5.so.8, needed by /usr/local/lib/libcaffe.so, may conflict with libhdf5.so.10
.build_release/tools/extract_features.o:在函数‘int feature_extraction_pipeline<float>(int, char**)’中:
extract_features.cpp:(.text._Z27feature_extraction_pipelineIfEiiPPc[_Z27feature_extraction_pipelineIfEiiPPc]+0xe6):对‘caffe::Net<float>::Net(std::string const&, caffe::Phase, caffe::Net<float> const*)’未定义的引用
collect2: 错误:ld 返回 1
make: *** [.build_release/tools/extract_features.bin] 错误 1
make: *** 正在等待未完成的任务....
/usr/bin/ld: warning: libhdf5_hl.so.8, needed by /usr/local/lib/libcaffe.so, may conflict with libhdf5_hl.so.10
/usr/bin/ld: warning: libhdf5.so.8, needed by /usr/local/lib/libcaffe.so, may conflict with libhdf5.so.10
.build_release/examples/cpp_classification/classification.o:在函数‘Classifier::Classifier(std::string const&, std::string const&, std::string const&, std::string const&)’中:
classification.cpp:(.text+0x29a1):对‘caffe:/:Net<float>:usr:Net/bin(/ldstd::: warningstring : const&, libhdf5_hl.so.8,caffe::Phase needed , bycaffe::Net /<floatusr/>local/ const*)lib/?libcaffe.so,? may未 conflict? with?? ??libhdf5_hl.so.10
/的usr/?bin??/ld?: ?
warning: libhdf5.so.8, needed by /usr/local/lib/libcaffe.so, may conflict withcollect2: 错误:ld 返回 1
libhdf5.so.10
.build_release/tools/caffe.o:在函数‘test()’中:
caffe.cpp:(.text+0xdad):对‘caffe::Net<float>::Net(std::string const&, caffe::Phase, caffe::Netmake: <*** [.build_release/examples/cpp_classification/classification.bin] 错误 1
float> const*)’未定义的引用
.build_release/tools/caffe.o:在函数‘train()’中:
caffe.cpp:(.text+0x1a8f):对‘caffe::P2PSync<float>::P2PSync(boost::shared_ptr<caffe::Solver<float> >, caffe::P2PSync<float>*, caffe::SolverParameter const&)’未定义的引用
caffe.cpp:(.text+0x1aae):对‘caffe::P2PSync<float>::run(std::vector<int, std::allocator<int> > const&)’未定义的引用
caffe.cpp:(.text+0x1ab6):对‘caffe::P2PSync<float>::~P2PSync()’未定义的引用
caffe.cpp:(.text+0x203f):对‘caffe::P2PSync<float>::~P2PSync()’未定义的引用
caffe.cpp:(.text+0x20e3):对‘caffe::P2PSync<float>::~P2PSync()’未定义的引用
.build_release/tools/caffe.o:在函数‘time()’中:
caffe.cpp:(.text+0x22be):对‘caffe::Net<float>::Net(std::string const&, caffe::Phase, caffe::Net<float> const*)’未定义的引用
caffe.cpp:(.text+0x25cc):对‘caffe::Layer<float>::Lock()’未定义的引用
caffe.cpp:(.text+0x26d1):对‘caffe::Layer<float>::Unlock()’未定义的引用
collect2: 错误 error :ld 返回 1
make: *** [.build_release/tools/caffe.bin] 错误 1
the Makefile.config file
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!
# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1
# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1
# Uncomment if you're using OpenCV 3
# OPENCV_VERSION := 3
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
BLAS_INCLUDE := /usr/include/atlas
#/path/to/your/blas
BLAS_LIB := /usr/lib64/atlas
#/path/to/your/blas
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
#PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib64/python2.7/site-packages/numpy/core/include/numpy/
#/usr/lib64/python2.7/site-packages/numpy/core/include/numpy/
#/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
ANACONDA_HOME := /data/software/anaconda2
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
$(ANACONDA_HOME)/include/python2.7 \
$(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
#PYTHON_LIB := /usr/lib64
#/usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1
# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1
# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
Metadata
Metadata
Assignees
Labels
No labels
Activity