Production-ready containerized stack for backtesting and live trading quantitative strategies.
Remote (You) → [VPN:10.8.0.1] → Internet → [Firewall:Port 1194]
→ Docker Host:192.168.1.1
│
┌───────────┴───────────┐
│ Docker Bridge │
│ 172.18.0.0/16 │
│ │_______________________________
│ [Jupyter:8888] ←→ [Prometheus:9090] → [Grafana:3000] │
│ ↓ ↓ ↑ │
│ [MLflow:5000] ←→ [Redis:6379] [Loki:3100] │
│ ↓ ↓ │
│ [MinIO:9000] ←→ [TimescaleDB:5432] │
└──────────────────────────────────────────────────────┘
- JupyterLab: Strategy development (port 8888)
- TimescaleDB: Market data storage (port 5432)
- MLflow: Model tracking (port 5000)
- MinIO: Artifact storage (port 9000)
- Redis: Signal cache (port 6379)
- Prometheus + Grafana + Loki: Observability (ports 9090, 3000, 3100)
# 1. Clone
git clone https://github.com/raynayam/quant-devops-stack
cd algorithmic-trading-platform
# 2. Configure
cp .env.example .env
# Edit .env with your credentials
# 3. Start
docker-compose up -d