Open
Description
Python groupby rolling aggregations return a single Index that corresponds to the original row position of the element, but in pandas return a MultiIndex that includes both the groupby key(s) and original row position.
This is not currently blocking any behavior with Dask + cuDF, as grouped rolling operations are blocked by #10173
import pandas as pd
import cudf
import numpy as np
df = cudf.datasets.randomdata(nrows=100000)
pdf = df.to_pandas()
print(pdf.groupby(['id']).rolling(window=3).x.mean().head())
print(df.groupby(['id']).rolling(window=3).x.mean().head())
id
879 43605 NaN
881 3941 NaN
882 29855 NaN
884 14616 NaN
70864 NaN
Name: x, dtype: float64
43605 <NA>
3941 <NA>
29855 <NA>
14616 <NA>
70864 <NA>
Name: x, dtype: float64
Metadata
Metadata
Assignees
Type
Projects
Status
No status