Skip to content

Commit

Permalink
Adding support for explode to cuDF (#7140)
Browse files Browse the repository at this point in the history
This is an operation that expands lists into rows and duplicates the existing rows from other columns. Explanation can be found in the issue #6151 

partially fixes #6151 

Missing pos_explode support required to completely close out #6151

Authors:
  - Mike Wilson (@hyperbolic2346)

Approvers:
  - Robert (Bobby) Evans (@revans2)
  - Jake Hemstad (@jrhemstad)
  - Karthikeyan (@karthikeyann)
  - @nvdbaranec

URL: #7140
  • Loading branch information
hyperbolic2346 authored Jan 25, 2021
1 parent 2e0889a commit f422391
Show file tree
Hide file tree
Showing 4 changed files with 643 additions and 0 deletions.
42 changes: 42 additions & 0 deletions cpp/include/cudf/reshape.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -97,6 +97,48 @@ std::unique_ptr<column> byte_cast(
flip_endianness endian_configuration,
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());

/**
* @brief Explodes a list column's elements.
*
* Any list is exploded, which means the elements of the list in each row are expanded into new rows
* in the output. The corresponding rows for other columns in the input are duplicated. Example:
* ```
* [[5,10,15], 100],
* [[20,25], 200],
* [[30], 300],
* returns
* [5, 100],
* [10, 100],
* [15, 100],
* [20, 200],
* [25, 200],
* [30, 300],
* ```
*
* Nulls and empty lists propagate in different ways depending on what is null or empty.
*```
* [[5,null,15], 100],
* [null, 200],
* [[], 300],
* returns
* [5, 100],
* [null, 100],
* [15, 100],
* ```
* Note that null lists are completely removed from the output
* and nulls and empty lists inside lists are pulled out and remain.
*
* @param input_table Table to explode.
* @param explode_column_idx Column index to explode inside the table.
* @param mr Device memory resource used to allocate the returned column's device memory.
*
* @return A new table with explode_col exploded.
*/
std::unique_ptr<table> explode(
table_view const& input_table,
size_type explode_column_idx,
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());

/** @} */ // end of group

} // namespace cudf
147 changes: 147 additions & 0 deletions cpp/src/reshape/explode.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
/*
* Copyright (c) 2021, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include <cudf/column/column_device_view.cuh>
#include <cudf/detail/gather.hpp>
#include <cudf/detail/nvtx/ranges.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <cudf/reshape.hpp>
#include <cudf/table/table.hpp>
#include <cudf/utilities/type_dispatcher.hpp>

#include <rmm/cuda_stream_view.hpp>
#include <rmm/device_uvector.hpp>
#include <rmm/exec_policy.hpp>

#include <thrust/binary_search.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>

#include <memory>
#include <type_traits>

namespace cudf {
namespace detail {
namespace {
/**
* @brief Function object for exploding a column.
*/
struct explode_functor {
template <typename T>
std::unique_ptr<table> operator()(table_view const& input_table,
size_type explode_column_idx,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr) const
{
CUDF_FAIL("Unsupported non-list column");

return std::make_unique<table>();
}
};

template <>
std::unique_ptr<table> explode_functor::operator()<list_view>(
table_view const& input_table,
size_type explode_column_idx,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr) const
{
/* we explode by building a gather map that includes the number of entries in each list inside
the column for each index. Interestingly, this can be done with lower_bound across the offsets
as values between the offsets will all map down to the index below. We have some off-by-one
manipulations we need to do with the output, but it's almost our gather map by itself. Once we
build the gather map we need to remove the explode column from the table and run gather on it.
Next we build the explode column, which turns out is simply lifting the child column out of the
explode column. This unrolls the top level of lists. Then we need to insert the explode column
back into the table and return it. */
lists_column_view lc{input_table.column(explode_column_idx)};
auto sliced_child = lc.get_sliced_child(stream);
rmm::device_uvector<size_type> gather_map_indices(sliced_child.size(), stream, mr);

// sliced columns can make this a little tricky. We have to start iterating at the start of the
// offsets for this column, which could be > 0. Then we also have to handle rebasing the offsets
// as we go.
auto offsets = lc.offsets().begin<size_type>() + lc.offset();
auto offsets_minus_one = thrust::make_transform_iterator(
offsets, [offsets] __device__(auto i) { return (i - offsets[0]) - 1; });
auto counting_iter = thrust::make_counting_iterator(0);

// This looks like an off-by-one bug, but what is going on here is that we need to reduce each
// result from `lower_bound` by 1 to build the correct gather map. It was pointed out that
// this can be accomplished by simply skipping the first entry and using the result of
// `lower_bound` directly.
thrust::lower_bound(rmm::exec_policy(stream),
offsets_minus_one + 1,
offsets_minus_one + lc.size() + 1,
counting_iter,
counting_iter + gather_map_indices.size(),
gather_map_indices.begin());

auto select_iter = thrust::make_transform_iterator(
thrust::make_counting_iterator(0),
[explode_column_idx](size_type i) { return i >= explode_column_idx ? i + 1 : i; });
std::vector<size_type> selected_columns(select_iter, select_iter + input_table.num_columns() - 1);

auto gathered_table = cudf::detail::gather(
input_table.select(selected_columns),
column_view(data_type(type_to_id<size_type>()), sliced_child.size(), gather_map_indices.data()),
cudf::out_of_bounds_policy::DONT_CHECK,
cudf::detail::negative_index_policy::ALLOWED,
stream,
mr);

std::vector<std::unique_ptr<column>> columns = gathered_table.release()->release();

columns.insert(columns.begin() + explode_column_idx,
std::make_unique<column>(column(sliced_child, stream, mr)));

return std::make_unique<table>(std::move(columns));
}
} // namespace

/**
* @copydoc
* cudf::explode(input_table,explode_column_idx,rmm::mr::device_memory_resource)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<table> explode(table_view const& input_table,
size_type explode_column_idx,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
return type_dispatcher(input_table.column(explode_column_idx).type(),
explode_functor{},
input_table,
explode_column_idx,
stream,
mr);
}

} // namespace detail

/**
* @copydoc cudf::explode(input_table,explode_column_idx,rmm::mr::device_memory_resource)
*/
std::unique_ptr<table> explode(table_view const& input_table,
size_type explode_column_idx,
rmm::mr::device_memory_resource* mr)
{
CUDF_FUNC_RANGE();
return detail::explode(input_table, explode_column_idx, rmm::cuda_stream_default, mr);
}

} // namespace cudf
1 change: 1 addition & 0 deletions cpp/tests/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -516,6 +516,7 @@ ConfigureTest(SEARCH_TEST "${SEARCH_TEST_SRC}")

set(RESHAPE_TEST_SRC
"${CMAKE_CURRENT_SOURCE_DIR}/reshape/byte_cast_tests.cpp"
"${CMAKE_CURRENT_SOURCE_DIR}/reshape/explode_tests.cpp"
"${CMAKE_CURRENT_SOURCE_DIR}/reshape/interleave_columns_tests.cpp"
"${CMAKE_CURRENT_SOURCE_DIR}/reshape/tile_tests.cpp")

Expand Down
Loading

0 comments on commit f422391

Please sign in to comment.