DATAMIMIC is an AI-powered, model-driven test data generation platform designed to quickly deliver realistic, privacy-compliant synthetic data.
β Model-driven | β AI-ready | β Privacy-focused | β Open Source (MIT)
π Book your Free Strategy Call and Demo to explore the full power of our Enterprise solution!
Feature | Community | Enterprise |
---|---|---|
Core Model-driven Generation | β | β |
Python & XML APIs | β | β |
Basic Anonymization | β | β |
AI-Enhanced Data Generation | β | β |
Advanced Enterprise Integrations | β | β |
Priority Support & SLA | β | β |
π Learn more about Enterprise Edition
Install easily via pip:
pip install datamimic-ce
Verify installation:
datamimic version
Generate realistic data effortlessly:
Python Example:
from datamimic_ce.domains.common.services import PersonService
person_service = PersonService(dataset="US")
person = person_service.generate()
print(f"Person: {person.name}, Email: {person.email}")
XML Example:
<setup>
<generate name="user_data" count="10" target="CSV">
<key name="name" entity="Person().name"/>
<key name="email" entity="Person().email"/>
</generate>
</setup>
Run XML via CLI:
datamimic run datamimic.xml
Quickly generate test-specific data using DataMimicTestFactory
:
customer.xml:
<setup>
<generate name="customer" count="10">
<variable name="person" entity="Person(min_age=21, max_age=67)"/>
<key name="id" generator="IncrementGenerator"/>
<key name="first_name" script="person.given_name"/>
<key name="last_name" script="person.family_name"/>
<key name="email" script="person.email"/>
<key name="status" values="'active', 'inactive', 'pending'"/>
</generate>
</setup>
Python Usage:
from datamimic_ce.factory.datamimic_test_factory import DataMimicTestFactory
customer_factory = DataMimicTestFactory("customer.xml", "customer")
customer = customer_factory.create()
print(customer["id"]) # 1
print(customer["first_name"]) # Jose
print(customer["last_name"]) # Ayers
- π Accelerate Development: Instantly create test data.
- π‘οΈ Privacy First: Built-in GDPR compliance.
- π Realistic Data: Authentic, weighted distributions from various data domains.
- π§ High Flexibility: Easily model, standardize, and customize data generation processes.
- π₯π€ Versatile Sources: Extensive import/export capabilities (JSON, XML, CSV, RDBMS, MongoDB, etc.).
- ποΈ Metadata-Driven: Operate seamlessly with an integrated metadata model.
- π Full Documentation
- π Run an instant demo:
datamimic demo create healthcare-example
datamimic run ./healthcare-example/datamimic.xml
Q: Is Community Edition suitable for commercial projects?
A: Absolutely! DATAMIMIC CE uses the MIT License.
Q: Why upgrade to Enterprise Edition (EE) instead of using Community Edition (CE)?
A: EE provides a web UI, enterprise support, team collaboration, and advanced features like AI-powered test data generation, workflow automation, and compliance tools.
Q: Can I contribute?
A: Yes! See Contributing Guide.
- π¬ GitHub Discussions
- π Issue Tracker
- π§ Email Support
β Star us on GitHub to keep DATAMIMIC growing!