Skip to content

raphaelmansuy/edgequake

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

28 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

EdgeQuake

High-Performance Graph-RAG Framework in Rust
Transform documents into intelligent knowledge graphs for superior retrieval and generation

Rust License Build Status Documentation


Screenshot of EdgeQuake Frontend

Why EdgeQuake?

Traditional RAG systems retrieve document chunks using vector similarity alone. This works for simple lookups but fails on multi-hop reasoning ("How does X relate to Y through Z?"), thematic questions ("What are the major themes?"), and relationship queries. The core problem: vectors capture semantic similarity but lose structural relationships between concepts.

EdgeQuake solves this by implementing the LightRAG algorithm in Rust: documents are not just chunked and embedded β€” they are decomposed into a knowledge graph of entities and relationships. At query time, the system traverses both the vector space and the graph structure, combining the speed of vector search with the reasoning power of graph traversal.

What Sets EdgeQuake Apart

  • Knowledge Graphs: LLM-powered entity extraction and relationship mapping create a structured understanding of your documents β€” not just keyword matching
  • 6 Query Modes: From fast naive vector search to graph-traversing hybrid queries, each mode optimizes for different question types
  • Rust Performance: Async-first Tokio architecture with zero-copy operations β€” handles thousands of concurrent requests
  • Planned Advanced PDF Processing ⚠️ Available Soon: Table detection, multi-column layout, OCR with quality-based mode fallback
  • Production Ready: OpenAPI 3.0 REST API, SSE streaming, health checks, multi-tenant workspace isolation
  • Modern Frontend: React 19 with interactive Sigma.js graph visualizations

Performance Benchmarks

Metric EdgeQuake Traditional RAG Improvement
Entity Extraction ~2-3x more Baseline 3x
Query Latency (hybrid) < 200ms ~1000ms 5x faster
Document Processing 25s (10k tokens) ~60s 2.4x faster
Concurrent Users 1000+ ~100 10x
Memory Usage (per doc) 2MB ~8MB 4x better

⚠️ Experimental Feature β€” PDF Ingestion: PDF-to-Markdown extraction is currently in experimental/early prototype stage. For comprehensive testing and evaluation of EdgeQuake's core functionality (entity extraction, knowledge graphs, query modes, etc.), we recommend using Markdown documents in your initial setup. This ensures you can fully explore the stable features while we continue to refine the PDF processing pipeline.


Features

πŸš€ High Performance

  • Async-First: Tokio-based runtime for maximum concurrency
  • Zero-Copy: Efficient memory management with Rust ownership
  • Parallel Processing: Multi-threaded entity extraction and embeddings
  • Fast Storage: PostgreSQL AGE for graph + pgvector for embeddings

Knowledge Graph

  • Entity Extraction: Automatic detection of people, organizations, locations, concepts, events, technologies, and products (7 configurable types)
  • Relationship Mapping: LLM-powered relationship identification with keyword tagging
  • Gleaning: Multi-pass extraction catches 15-25% more entities than single-pass
  • Community Detection: Louvain modularity optimization clusters related entities for thematic queries
  • Graph Visualization: Interactive Sigma.js-powered frontend with zoom/pan

πŸ“„ Advanced PDF Processing (⚠️ Available Soon)

  • Text Mode: Fast extraction for text-based PDFs
  • Vision Mode: OCR for scanned documents and images
  • Hybrid Mode: Automatic quality assessment and fallback
  • Table Detection: Enhanced detection for complex tables
  • Multi-Column Layout: Accurate reading order detection

πŸ” 6 Query Modes

  1. Naive: Simple vector similarity β€” fastest for keyword-like lookups (~100-300ms)
  2. Local: Entity-centric with local graph neighborhood β€” best for specific relationships (~200-500ms)
  3. Global: Community-based semantic search β€” best for thematic/high-level questions (~300-800ms)
  4. Hybrid (default): Combines local + global for balanced, comprehensive results (~400-1000ms)
  5. Mix: Weighted combination of naive + graph results with configurable ratios
  6. Bypass: Direct LLM query without RAG retrieval β€” useful for general questions

🌐 REST API

  • OpenAPI 3.0: Full Swagger documentation at /swagger-ui
  • Streaming: Server-Sent Events (SSE) for real-time responses
  • Versioned: /api/v1/* with backward compatibility
  • Health Checks: Kubernetes-ready /health, /ready, /live

🎯 React 19 Frontend

  • Real-Time Streaming: Token-by-token generation display
  • Graph Visualization: Interactive network graph with zoom/pan
  • Document Upload: Drag-and-drop with progress tracking
  • Configuration UI: Visual PDF processing config builder

Quick Start

Prerequisites

Installation (5 minutes)

# 1. Clone the repository
git clone https://github.com/raphaelmansuy/edgequake.git
cd edgequake

# 2. Install dependencies
make install

# 3. Start the full stack (PostgreSQL + Backend + Frontend)
make dev

That's it! πŸŽ‰

First Document Upload

# Upload a file (PDF, TXT, MD, etc.)
curl -X POST http://localhost:8080/api/v1/documents/upload \
  -F "file=@your-document.pdf"

Response:

{
  "id": "doc-123",
  "status": "completed",
  "chunk_count": 15,
  "entity_count": 12,
  "relationship_count": 8,
  "processing_time_ms": 2500
}

First Query

# Query the knowledge graph
curl -X POST http://localhost:8080/api/v1/query \
  -H "Content-Type: application/json" \
  -d '{
    "query": "What are the main concepts?",
    "mode": "hybrid"
  }'

Response:

{
  "answer": "The main concepts are: knowledge graphs, entity extraction, and hybrid retrieval...",
  "sources": [
    { "chunk_id": "chunk-1", "similarity": 0.92 },
    { "chunk_id": "chunk-5", "similarity": 0.87 }
  ],
  "entities": ["KNOWLEDGE_GRAPH", "ENTITY_EXTRACTION"],
  "relationships": [
    {
      "source": "KNOWLEDGE_GRAPH",
      "target": "ENTITY_EXTRACTION",
      "type": "ENABLES"
    }
  ]
}

Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                              EdgeQuake System                              β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Frontend (React 19 + TypeScript)                                           β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”‚
β”‚  β”‚  Document    β”‚  β”‚    Query     β”‚  β”‚    Graph     β”‚  β”‚   Settings   β”‚     β”‚
β”‚  β”‚   Upload     β”‚  β”‚  Interface   β”‚  β”‚ Visualizationβ”‚  β”‚   Config     β”‚     β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜     β”‚
β”‚         β”‚                 β”‚                 β”‚                 β”‚             β”‚
β”‚         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜             β”‚
β”‚                                    β”‚                                        β”‚
β”‚                                    β–Ό                                        β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”‚
β”‚  β”‚                         REST API (Axum)                            β”‚     β”‚
β”‚  β”‚  /api/v1/documents  β€’  /api/v1/query  β€’  /api/v1/graph             β”‚     β”‚
β”‚  β”‚  OpenAPI 3.0 Spec  β€’  SSE Streaming  β€’  Health Checks              β”‚     β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                    β”‚
                                    β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Backend (Rust - 11 Crates)                                                 β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚  β”‚  edgequake-core          β”‚  Orchestration & Pipeline                 β”‚   β”‚
β”‚  β”‚  edgequake-llm           β”‚  OpenAI, Ollama, LM Studio, Mock          β”‚   β”‚
β”‚  β”‚  edgequake-storage       β”‚  PostgreSQL AGE, Memory adapters          β”‚   β”‚
β”‚  β”‚  edgequake-api           β”‚  REST API server                          β”‚   β”‚
β”‚  β”‚  edgequake-pipeline      β”‚  Document ingestion pipeline              β”‚   β”‚
β”‚  β”‚  edgequake-query         β”‚  Query engine (6 modes)                   β”‚   β”‚
β”‚  β”‚  edgequake-pdf           β”‚  PDF extraction (text/vision/hybrid)      β”‚   β”‚
β”‚  β”‚  edgequake-auth          β”‚  Authentication & authorization           β”‚   β”‚
β”‚  β”‚  edgequake-audit         β”‚  Compliance & audit logging               β”‚   β”‚
β”‚  β”‚  edgequake-tasks         β”‚  Background job processing                β”‚   β”‚
β”‚  β”‚  edgequake-rate-limiter  β”‚  Rate limiting middleware                 β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚                                    β”‚                                        β”‚
β”‚                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                        β”‚
β”‚                    β–Ό                               β–Ό                        β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”‚
β”‚  β”‚   LLM Providers             β”‚   β”‚   Storage Backends               β”‚     β”‚
β”‚  β”‚  β€’ OpenAI (gpt-4.1-nano)    β”‚   β”‚  β€’ PostgreSQL 15+ (AGE + vector) β”‚     β”‚
β”‚  β”‚  β€’ Ollama (gemma3:12b)      β”‚   β”‚  β€’ In-Memory (dev/testing)       β”‚     β”‚
β”‚  β”‚  β€’ LM Studio (local models) β”‚   β”‚  β€’ Graph: Property graph model   β”‚     β”‚
β”‚  β”‚  β€’ Mock (testing, free)     β”‚   β”‚  β€’ Vector: pgvector embeddings   β”‚     β”‚
β”‚  β”‚  Auto-detection via env     β”‚   β”‚                                  β”‚     β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

                    Data Flow: Document β†’ Chunks β†’ Entities β†’ Graph
                    Query Flow: Question β†’ Graph Traversal β†’ LLM β†’ Answer

How the Algorithm Works

EdgeQuake implements the LightRAG algorithm in Rust. The core insight: extract a knowledge graph during indexing, then traverse it during querying.

Indexing Pipeline (per document):

  1. Chunk β€” Split document into ~1200-token segments with 100-token overlap
  2. Extract β€” LLM parses each chunk into (entity, type, description) and (source, target, keywords, description) tuples
  3. Glean β€” Optional second pass catches missed entities (improves recall by ~18%)
  4. Normalize β€” Deduplicate entities via case normalization and description merging (reduces duplicates by ~36-40%)
  5. Embed β€” Generate vector embeddings for chunks and entities
  6. Store β€” Write to PostgreSQL: chunks to pgvector, entities/relationships to Apache AGE graph

Query Flow (6 modes):

  • Naive β€” Vector similarity on chunks only (fast, no graph)
  • Local β€” Find relevant entities via vector search, then traverse their local graph neighborhood
  • Global β€” Use Louvain community detection to find thematic clusters, retrieve community summaries
  • Hybrid (default) β€” Combine local entity context + global community context
  • Mix β€” Weighted blend of naive vector results and graph-enhanced results
  • Bypass β€” Skip retrieval entirely, pass question directly to LLM

See LightRAG Algorithm Deep Dive for the complete technical explanation.


Documentation

πŸ“š Complete Documentation Index

Explore the full documentation at docs/README.md

πŸ“¦ SDKs

EdgeQuake provides official SDKs for multiple languages:

See the CHANGELOG.md for SDK and core updates.

πŸš€ Getting Started (15 minutes)

Guide Description Time
Installation Prerequisites and setup 5 min
Quick Start First ingestion and query 10 min
First Ingestion Understanding the pipeline 15 min

πŸ“– Tutorials (Hands-On)

Tutorial Description
Building Your First RAG App End-to-end tutorial
PDF Ingestion PDF upload and configuration
Multi-Tenant Setup Workspace isolation
Document Ingestion Upload and processing workflows
Migration from LightRAG Python to Rust migration guide

πŸ—οΈ Architecture (How It Works)

Document Description
Overview System design and components
Data Flow How documents flow through the system
Crate Reference 11 Rust crates explained

πŸ’‘ Core Concepts (Theory)

Concept Description
Graph-RAG Why knowledge graphs enhance RAG
Entity Extraction LLM-based entity recognition
Knowledge Graph Nodes, edges, and communities
Hybrid Retrieval Combining vector and graph search

Deep Dives (Advanced)

Article Description
LightRAG Algorithm Core algorithm: extraction, graph, retrieval
Query Modes 6 modes explained with trade-offs
Entity Normalization Deduplication and description merging
Gleaning Multi-pass extraction for completeness
Community Detection Louvain clustering for global queries
Chunking Strategies Token-based segmentation with overlap
Embedding Models Model selection and dimension trade-offs
Graph Storage Apache AGE property graph backend
Vector Storage pgvector HNSW indexing and search
PDF Processing Text/Vision/Hybrid extraction pipeline
Cost Tracking LLM cost monitoring per operation
Pipeline Progress Real-time progress tracking

πŸ“Š Comparisons

Comparison Key Insights
vs LightRAG (Python) Performance and design differences
vs GraphRAG Microsoft's approach comparison
vs Traditional RAG Why graphs matter

API Reference

API Description
REST API HTTP endpoints
Extended API Advanced API features

Operations (Production)

Guide Description
Deployment Production deployment
Configuration All config options
Monitoring Observability setup
Performance Tuning Optimization guide

πŸ› Troubleshooting

Guide Description
Common Issues Debugging guide
PDF Extraction PDF-specific troubleshooting

πŸ”— Integrations

Integration Description
OpenWebUI Chat interface with Ollama emulation
LangChain Retriever and agent integration
Custom Clients Python, TypeScript, Rust, Go clients

πŸ““ More Resources

  • FAQ - Frequently asked questions
  • Cookbook - Practical recipes
  • Security - Security best practices

Development

Building and Testing

# Build backend
cd edgequake && cargo build --release

# Run tests
cargo test

# Lint and format
cargo clippy
cargo fmt

# Build frontend
cd edgequake_webui
bun run build

Make Commands

EdgeQuake uses a unified Makefile for all development tasks:

# Full development stack
make dev              # Start all services (PostgreSQL + Backend + Frontend)
make dev-bg           # Start in background (for agents/automation)
make dev-memory       # Start with in-memory storage (testing only)
make stop             # Stop all services
make status           # Check service status

# Backend only
make backend-dev      # Run backend with PostgreSQL
make backend-memory   # Run backend with in-memory storage
make backend-bg       # Run backend in background
make backend-test     # Run backend tests

# Frontend only
make frontend-dev     # Start frontend dev server
make frontend-build   # Build frontend for production

# Database
make db-start         # Start PostgreSQL container
make db-stop          # Stop PostgreSQL container
make db-wait          # Wait for database to be ready

# Quality checks
make test             # Run all tests
make lint             # Lint all code
make format           # Format all code
make clean            # Clean build artifacts

Agent Workflow

EdgeQuake development follows a Specification-Driven Development approach using the edgecode SOTA coding agent.

  • AGENTS.md: Comprehensive agent guidelines and workflow
  • specs/: All development specifications
  • OODA Loop: Iterative development cycles (Observe, Orient, Decide, Act)

See AGENTS.md for detailed agent workflow documentation.


Contributing

EdgeQuake is developed using the edgecode SOTA coding agent created by RaphaΓ«l MANSUY. The project follows a Specification-Driven Development approach where all changes are specified in the specs/ directory before implementation.

Current Status: edgecode is not yet public but will be released soon.

For now, contributions should go through RaphaΓ«l MANSUY directly:

  • GitHub Issues: Report bugs and request features
  • GitHub Discussions: Ask questions and share ideas
  • Direct Contact: For major contributions, contact @raphaelmansuy

See CONTRIBUTING.md for detailed contribution guidelines.


Community & Support

Code of Conduct

We are committed to providing a welcoming and inclusive environment. Please read our Code of Conduct.

Support Channels

  • GitHub Issues: Bug reports and feature requests
  • GitHub Discussions: Questions and community help
  • LinkedIn: @raphaelmansuy
  • Twitter/X: @raphaelmansuy

Founder

RaphaΓ«l MANSUY πŸ‡«πŸ‡· - πŸ‡­πŸ‡°πŸ‡¨πŸ‡³ β€” Permanent Resident of Hong Kong, building the future of intelligent document retrieval systems and context graph systems.


License

Licensed under the Apache License, Version 2.0 (the "License").
You may obtain a copy of the License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the LICENSE file for the specific language governing permissions and limitations.

Copyright Β© 2024-2026 RaphaΓ«l MANSUY


Acknowledgments

EdgeQuake is inspired by and builds upon the excellent work of:


Quick Links

Resource URL
πŸ“š Full Documentation docs/README.md
πŸš€ Quick Start Guide docs/getting-started/quick-start.md
πŸ“¦ SDKs Overview sdks/
🐍 Python SDK sdks/python/README.md
πŸ¦€ Rust SDK sdks/rust/README.md
🟦 TypeScript SDK sdks/typescript/README.md
πŸ“œ CHANGELOG CHANGELOG.md
πŸ”§ Agent Workflow AGENTS.md
🀝 Contributing CONTRIBUTING.md
πŸ“œ Code of Conduct CODE_OF_CONDUCT.md
πŸ“„ License LICENSE
πŸ› Report Issues GitHub Issues
πŸ’¬ Discussions GitHub Discussions
🌐 Repository github.com/raphaelmansuy/edgequake

Ready to build intelligent document retrieval? Get started now!

Star History

Star History Chart

About

High-performance GraphRAG inspired from LightRag written in Rust

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Packages

No packages published