Skip to content

ramangupta/DPDK-AI-Engine

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

⚡🚀 DPDK-AI-Engine: Next-Gen Packet Analytics

Ultra-low latency packet analytics with DPDK & AI — Analyzing traffic at line-rate with nanosecond precision.

Build License Stars Contributions welcome

DPDK-AI-Engine is a blazing-fast packet analytics framework built on DPDK for zero-copy capture and AI-ready hooks for advanced traffic insights.
Think of it as tcpdump on steroids — nanosecond precision, flow-aware, and ready for ML pipelines.


✨ Highlights

  • 🚀 Capture Engines – DPDK (ultra-low latency) & PCAP/AF_PACKET (dev/testing).
  • 📊 Real-Time Stats – throughput, protocol counters, TCP reassembly, flow metrics.
  • 🔎 Deep Protocol Visibility – IPv4/IPv6, ARP, ICMP, UDP, TCP, DNS, DHCP, HTTP, TLS.
  • 🧠 AI-Ready – JSON stats + feature hooks for anomaly detection & ML.
  • 📈 Dashboard & CLI – console summaries + JSON output for Grafana/Prometheus.

🔥 DashBoard

Dashboard Screenshot


🚀 Demo

Here’s a quick look at the dashboard and live parser logs in action:

📊 Dashboard (Top)
📈 Dashboard (Middle)
📉 Dashboard (Bottom)
📝 Live Parser Logs

✨ Features

🔥 Market Analytics

Market Analytics Screenshot

View live market data, charts, and analytics in real-time.


Capture Modes

  • DPDK mode for ultra-low latency (nanosecond precision).
  • AF_PACKET/PCAP mode for development & testing.

Real-Time Analytics

  • Per-protocol bandwidth and packet counters.
  • Flow-based stats (duration, throughput, avg pkt size).
  • TCP reassembly with application-layer visibility.

Protocol Decoders

  • IPv4 / IPv6 / ARP / ICMP / UDP / TCP
  • DNS, DHCP, HTTP (with request/response tracking)
  • TLS handshakes (basic fingerprinting)

Flow Management

  • Automatic flow tracking and expiration.
  • Bidirectional support for accurate session analysis.

Extensible & AI-Ready

  • Structured output for ML pipelines.
  • Hooks for anomaly detection, feature extraction, and predictive models.

🏗️ Architecture Overview

            ┌──────────────┐
            │   NIC / DPDK │
            └───────┬──────┘
                    │ packets (10G/40G/100G)
            ┌───────▼─────────┐
            │  Packet Capture │   (DPDK / AF_PACKET / PCAP)
            └───────┬─────────┘
                    │
            ┌───────▼─────────┐
            │  Parser & Stats │   (L2/L3/L4 decoders, flow tracking,
            │                 │    TCP reassembly, drops/errors)
            └───────┬─────────┘
                    │
    ┌───────────────▼───────────────┐
    │   Analytics & AI Integration   │  (anomaly detection, ML features,
    │                                │   predictive models)
    └───────────────┬───────────────┘
                    │
            ┌───────▼─────────┐
            │  Output / UI    │   (console, JSON, Grafana, custom UI)
            └─────────────────┘
  • Data Sources: Market feeds, sensors, APIs, etc.
  • DPDK Packet Capture: Ultra-fast, zero-copy packet ingestion.
  • TCP/IP Reassembly: Handles fragmented packets & ensures reliable analysis.
  • AI Prediction: Modular ML/Deep Learning models.
  • Dashboard/Storage: Real-time visualization or database storage.

🚀 Use Cases

  • Finance – monitor exchange feeds & trading flows with nanosecond precision.
  • Security – detect anomalies, intrusions, and encrypted traffic patterns.
  • Cloud & Telco – real-time observability of tunnels, VXLAN/GENEVE overlays (roadmap).
  • Research – generate datasets for ML models in networking & cybersecurity.

📍 Roadmap

🔹 Tunneling protocols (GRE, VXLAN, GENEVE) 🔹 Drop/error/malformed packet tracking (#35) 🔹 More protocol parsers (MQTT, QUIC, gRPC, FIX) 🔹 Inline ML model inference ( anomaly detection, classification ) 🔹 Web-based UI & dashboards

See full roadmap here: docs/ROADMAP.md


🏁 Quick Start

Prerequisites

Dependencies: Make sure the following libraries are installed on your system:

  • Meson
  • Ninja
  • libpcap
  • DPDK (if using DPDK environment)
  • Standard build tools (gcc/clang, pkg-config, make)
sudo apt update
sudo apt install -y meson ninja-build build-essential pkg-config \
    libpcap-dev

# For DPDK (optional, for high-speed packet capture)
sudo apt install -y dpdk dpdk-dev

Build

# Configure
meson setup build

# Compile
ninja -C build

📊 Sample Output

Flow Stats

Flow: 192.168.0.104:40498 -> 13.89.179.8:443
  Proto: TCP    Pkts: 10     Bytes: 3288    
  Duration: 1.188 s    AvgPkt: 328.8 B  Throughput: 22.15 Kbps

TCP Reassembly

=== TCP Reassembly Stats ===
Segments received    : 26
Bytes delivered      : 5378
Duplicate segments   : 9
Out-of-order segments: 0

🤝 Contributing

Pull requests are welcome! Check the TODO.md for active stories & open features. We’re building this as a modular, community-driven project for next-gen packet analytics.


📜 License

Apache 2.0 – free to use, modify, and extend.

About

Next-gen packet analytics at line rate — AI-ready and open source

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published