Ultra-low latency packet analytics with DPDK & AI — Analyzing traffic at line-rate with nanosecond precision.
DPDK-AI-Engine is a blazing-fast packet analytics framework built on DPDK for zero-copy capture and AI-ready hooks for advanced traffic insights.
Think of it as tcpdump on steroids — nanosecond precision, flow-aware, and ready for ML pipelines.
- 🚀 Capture Engines – DPDK (ultra-low latency) & PCAP/AF_PACKET (dev/testing).
- 📊 Real-Time Stats – throughput, protocol counters, TCP reassembly, flow metrics.
- 🔎 Deep Protocol Visibility – IPv4/IPv6, ARP, ICMP, UDP, TCP, DNS, DHCP, HTTP, TLS.
- 🧠 AI-Ready – JSON stats + feature hooks for anomaly detection & ML.
- 📈 Dashboard & CLI – console summaries + JSON output for Grafana/Prometheus.
Here’s a quick look at the dashboard and live parser logs in action:
📊 Dashboard (Top)
|
📈 Dashboard (Middle)
|
📉 Dashboard (Bottom)
|
📝 Live Parser Logs
|
View live market data, charts, and analytics in real-time.
✅ Capture Modes
- DPDK mode for ultra-low latency (nanosecond precision).
- AF_PACKET/PCAP mode for development & testing.
✅ Real-Time Analytics
- Per-protocol bandwidth and packet counters.
- Flow-based stats (duration, throughput, avg pkt size).
- TCP reassembly with application-layer visibility.
✅ Protocol Decoders
- IPv4 / IPv6 / ARP / ICMP / UDP / TCP
- DNS, DHCP, HTTP (with request/response tracking)
- TLS handshakes (basic fingerprinting)
✅ Flow Management
- Automatic flow tracking and expiration.
- Bidirectional support for accurate session analysis.
✅ Extensible & AI-Ready
- Structured output for ML pipelines.
- Hooks for anomaly detection, feature extraction, and predictive models.
┌──────────────┐
│ NIC / DPDK │
└───────┬──────┘
│ packets (10G/40G/100G)
┌───────▼─────────┐
│ Packet Capture │ (DPDK / AF_PACKET / PCAP)
└───────┬─────────┘
│
┌───────▼─────────┐
│ Parser & Stats │ (L2/L3/L4 decoders, flow tracking,
│ │ TCP reassembly, drops/errors)
└───────┬─────────┘
│
┌───────────────▼───────────────┐
│ Analytics & AI Integration │ (anomaly detection, ML features,
│ │ predictive models)
└───────────────┬───────────────┘
│
┌───────▼─────────┐
│ Output / UI │ (console, JSON, Grafana, custom UI)
└─────────────────┘
- Data Sources: Market feeds, sensors, APIs, etc.
- DPDK Packet Capture: Ultra-fast, zero-copy packet ingestion.
- TCP/IP Reassembly: Handles fragmented packets & ensures reliable analysis.
- AI Prediction: Modular ML/Deep Learning models.
- Dashboard/Storage: Real-time visualization or database storage.
- Finance – monitor exchange feeds & trading flows with nanosecond precision.
- Security – detect anomalies, intrusions, and encrypted traffic patterns.
- Cloud & Telco – real-time observability of tunnels, VXLAN/GENEVE overlays (roadmap).
- Research – generate datasets for ML models in networking & cybersecurity.
🔹 Tunneling protocols (GRE, VXLAN, GENEVE) 🔹 Drop/error/malformed packet tracking (#35) 🔹 More protocol parsers (MQTT, QUIC, gRPC, FIX) 🔹 Inline ML model inference ( anomaly detection, classification ) 🔹 Web-based UI & dashboards
See full roadmap here: docs/ROADMAP.md
Dependencies: Make sure the following libraries are installed on your system:
- Meson
- Ninja
- libpcap
- DPDK (if using DPDK environment)
- Standard build tools (gcc/clang, pkg-config, make)
sudo apt update
sudo apt install -y meson ninja-build build-essential pkg-config \
libpcap-dev
# For DPDK (optional, for high-speed packet capture)
sudo apt install -y dpdk dpdk-dev# Configure
meson setup build
# Compile
ninja -C buildFlow: 192.168.0.104:40498 -> 13.89.179.8:443
Proto: TCP Pkts: 10 Bytes: 3288
Duration: 1.188 s AvgPkt: 328.8 B Throughput: 22.15 Kbps
=== TCP Reassembly Stats ===
Segments received : 26
Bytes delivered : 5378
Duplicate segments : 9
Out-of-order segments: 0
Pull requests are welcome! Check the TODO.md for active stories & open features. We’re building this as a modular, community-driven project for next-gen packet analytics.
Apache 2.0 – free to use, modify, and extend.





