Lakehouse is getting more and more popular nowadays, and many Oragnization seeing massive value in building and maintaining the lakehouse instead of maintaining the Warehouse technologies for various reasons. There are lot of great articles covering this topic in the internet or ask ChatGPT to know more about this area.
This repo in particular belongs to one such part of lakehouse ecosystem, where the concern is how to share data securely, within the org and outside of the organization. Heavily inspired, infact the complete idea is from Delta-sharing protocol. delta-sharing solves the data-sharing problem for the people using Delta Table format and Databricks (company behind Delta-lake) provides excellent self-service tools on top of open source delta-sharig
- Delta-sharing Framework is a protocol which can be adopted to other Table formats (Hudi and iceberg) apart from Delta
- A Quick POC (Super alpha stage) to prove that protocol can be implemented easily and adopted to other table formats as well
- Original Delta-sharing server was written in Scala, This repo inspired that server implementation and written in Python language which can be good starting point for python developers, and can be adopted by the organizations where python deployment stack (infra stack) is already available.
- This Repo provides Alpha implementation of Sharing protocol for Iceberg table format using Pyiceberg. This can be enhanced/improved based on the interest.
- This Repo rewrites the sharing protocol for Delta table format as well using delta-rs (actually this is super to implement this protocol on top of this python package)
- Lot of Engines like Spark,Trino,Presto,Dremio queries Table format efficiently why we need delta-sharing.
- In Delta sharing, you can logically group required few tables and send them as shares to the other teams or other org.
- you need to share the token to the user, they can use that token to authenticate with delta-sharing server, once authenticated they can read the data from lakehouse without worrying about s3 authentication IAM cross account configurations etc..
Run this commands in the root folder of this project
Usage:
make <target>
Targets:
venv create a virtual environment for development
start_backend_server starts prefect server
start_frontend_server starts prefect agent
help Show help
make venv
To share iceberg table format install following extra package and setup catalog like AWS Glue or Hive, refer PyIceberg documentation
# install iceberg
pip install pyiceberg
To share delta-lake table format, install delta-lake package and delta-lake doesn't need any catalog it will directly fetch the metadata from table formats metadata in cloud storage files.
pip install deltalake
make start_backend_server
In another termianl start frontend streamlit APP.
make start_frontend_server
use docker setup to quickly setup the app
docker-compose up
Set few of the Environment variables before starting the docker-compose up
refer .env.example
file for setting the variables
Once docker-compose was up and running successfully, we can expect following urls
-
RDS Admin : http://localhost:8081/
-
Postgres : host: localhost, port:5433
-
Backend (FastAPI): http://localhost:8001/docs
-
Frontend (streamlit): http://localhost:8501
-
Set the following env variables accordingly and Run
sqls/prepopulate_data.py
for creating superuser and few test tables- for local setup set
export env=local
- for docker setup set
export env=docker
- for local setup set
- Login Username :
admin
- Login password :
admin@123
Refer the accompanied blog post for more details : https://guruengineering.substack.com/p/lakehouse-sharing
- For more details about the backend and frondend refer respective directories
.
├── Makefile
├── README.md
├── backend
│ ├── Dockerfile
│ ├── app
│ │ ├── README.md
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ ├── conf.py
│ │ ├── core
│ │ │ ├── __init__.py
│ │ │ ├── __pycache__
│ │ │ ├── base.py
│ │ │ ├── cloud
│ │ │ │ ├── __init__.py
│ │ │ │ ├── __pycache__
│ │ │ │ ├── aws.py
│ │ │ │ ├── azure.py
│ │ │ │ ├── base.py
│ │ │ │ └── gcs.py
│ │ │ ├── delta
│ │ │ │ ├── __init__.py
│ │ │ │ ├── __pycache__
│ │ │ │ ├── models.py
│ │ │ │ ├── share.py
│ │ │ │ └── utils.py
│ │ │ └── iceberg
│ │ │ ├── __init__.py
│ │ │ ├── __pycache__
│ │ │ ├── models.py
│ │ │ └── share.py
│ │ ├── db
│ │ │ ├── __init__.py
│ │ │ ├── __pycache__
│ │ │ ├── auth_queries.py
│ │ │ ├── queries.py
│ │ │ └── tables.py
│ │ ├── main.py
│ │ ├── models
│ │ │ ├── __init__.py
│ │ │ ├── __pycache__
│ │ │ ├── admin.py
│ │ │ ├── auth.py
│ │ │ ├── common.py
│ │ │ └── response.py
│ │ ├── routers
│ │ │ ├── __init__.py
│ │ │ ├── __pycache__
│ │ │ ├── admin.py
│ │ │ ├── auth.py
│ │ │ └── share.py
│ │ ├── securities
│ │ │ ├── __init__.py
│ │ │ ├── __pycache__
│ │ │ ├── jwt_utils.py
│ │ │ └── user_auth.py
│ │ ├── serverconf.yaml
│ │ └── utilities
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ ├── defaults.py
│ │ ├── exceptions.py
│ │ ├── pagination.py
│ │ ├── responses.py
│ │ └── validators.py
│ ├── requirements.txt
│ └── tests
│ ├── __init__.py
│ ├── __pycache__
│ ├── mock_results.py
│ └── test_share_apis.py
├── docker-compose.yaml
├── frontend
│ ├── Dockerfile
│ ├── README.md
│ ├── app
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ ├── core
│ │ │ ├── __init__.py
│ │ │ ├── __pycache__
│ │ │ ├── api
│ │ │ │ ├── __init__.py
│ │ │ │ ├── __pycache__
│ │ │ │ ├── config.py
│ │ │ │ ├── jwt_auth.py
│ │ │ │ └── rest.py
│ │ │ ├── base
│ │ │ │ ├── __init__.py
│ │ │ │ ├── __pycache__
│ │ │ │ ├── auth.py
│ │ │ │ ├── client.py
│ │ │ │ └── layout.py
│ │ │ ├── link.py
│ │ │ ├── login.py
│ │ │ ├── schema.py
│ │ │ ├── share.py
│ │ │ ├── table.py
│ │ │ ├── table_format.py
│ │ │ └── user.py
│ │ └── main.py
│ ├── config.yaml
│ └── requirements.txt
├── images
│ └── lakehouse-sharing-arch.png
├── notebooks
│ ├── client-example.ipynb
│ └── profile.json
└── sqls
└── prepopulate_data.py
- Improve Backend database Modeling
- improve test cases and performance
- Try adopting this protocol for Hudi table format
- Try to capture change data feed (CDF) from delta and iceberg
- PAckage this code in docker and wrap it up in Helm chart
- For iceberg currently we are using glue catalog, load metadata directly from cloud storage without catalog