Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve GPU functionality #780

Merged
merged 10 commits into from
Aug 24, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -25,10 +25,12 @@ Tables = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"

[weakdeps]
CategoricalArrays = "324d7699-5711-5eae-9e2f-1d82baa6b597"
GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527"
Makie = "ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a"

[extensions]
DimensionalDataCategoricalArraysExt = "CategoricalArrays"
DimensionalDataGPUArraysCoreExt = "GPUArraysCore"
DimensionalDataMakie = "Makie"

[compat]
Expand All @@ -54,6 +56,7 @@ Interfaces = "0.3"
IntervalSets = "0.5, 0.6, 0.7"
InvertedIndices = "1"
IteratorInterfaceExtensions = "1"
JLArrays = "0.1"
LinearAlgebra = "1"
Makie = "0.19, 0.20, 0.21"
OffsetArrays = "1"
Expand Down Expand Up @@ -85,6 +88,7 @@ Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
ImageFiltering = "6a3955dd-da59-5b1f-98d4-e7296123deb5"
ImageTransformations = "02fcd773-0e25-5acc-982a-7f6622650795"
JLArrays = "27aeb0d3-9eb9-45fb-866b-73c2ecf80fcb"
Makie = "ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a"
OffsetArrays = "6fe1bfb0-de20-5000-8ca7-80f57d26f881"
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
Expand All @@ -95,4 +99,4 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d"

[targets]
test = ["Aqua", "ArrayInterface", "BenchmarkTools", "CategoricalArrays", "ColorTypes", "Combinatorics", "CoordinateTransformations", "DataFrames", "Distributions", "Documenter", "ImageFiltering", "ImageTransformations", "CairoMakie", "OffsetArrays", "Plots", "Random", "SafeTestsets", "StatsPlots", "Test", "Unitful"]
test = ["Aqua", "ArrayInterface", "BenchmarkTools", "CategoricalArrays", "ColorTypes", "Combinatorics", "CoordinateTransformations", "DataFrames", "Distributions", "Documenter", "ImageFiltering", "ImageTransformations", "JLArrays", "CairoMakie", "OffsetArrays", "Plots", "Random", "SafeTestsets", "StatsPlots", "Test", "Unitful"]
12 changes: 12 additions & 0 deletions ext/DimensionalDataGPUArraysCoreExt.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
module DimensionalDataGPUArraysCoreExt

using DimensionalData: AbstractDimArray
using GPUArraysCore: AbstractGPUArrayStyle
using Base.Broadcast: Broadcasted

function Base.copyto!(des::AbstractDimArray, bc::Broadcasted{<:AbstractGPUArrayStyle})
copyto!(parent(des), bc)
return des
end

end
14 changes: 14 additions & 0 deletions src/array/broadcast.jl
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,20 @@ function Base.copyto!(dest::AbstractDimArray, bc::Broadcasted{DimensionalStyle{S
end
end

ptiede marked this conversation as resolved.
Show resolved Hide resolved
# This is needed for GPUs to prevent scalar indexing problems for things like
# d .= 1:10
function Base.copyto!(dest::AbstractDimArray, bc::Broadcasted{Nothing})
rafaqz marked this conversation as resolved.
Show resolved Hide resolved
copyto!(parent(dest), bc)
dest
end

ptiede marked this conversation as resolved.
Show resolved Hide resolved
# Needed for things like d .= 0 when on the GPU
function Base.copyto!(dest::AbstractDimArray, bc::Broadcasted{<:Broadcast.AbstractArrayStyle{0}})
copyto!(parent(dest), bc)
dest
end


function Base.similar(bc::Broadcast.Broadcasted{DimensionalStyle{S}}, ::Type{T}) where {S,T}
A = _firstdimarray(bc)
rebuildsliced(A, similar(_unwrap_broadcasted(bc), T, axes(bc)...), axes(bc), Symbol(""))
Expand Down
43 changes: 25 additions & 18 deletions src/array/methods.jl
Original file line number Diff line number Diff line change
Expand Up @@ -53,26 +53,33 @@ for (m, f) in ((:Statistics, :median), (:Base, :any), (:Base, :all))
end
end

# These are not exported but it makes a lot of things easier using them
function Base._mapreduce_dim(f, op, nt::NamedTuple{(),<:Tuple}, A::AbstractDimArray, dims)
rebuild(A, Base._mapreduce_dim(f, op, nt, parent(A), dimnum(A, _astuple(dims))), reducedims(A, dims))
end
function Base._mapreduce_dim(f, op, nt::NamedTuple{(),<:Tuple}, A::AbstractDimArray, dims::Colon)
Base._mapreduce_dim(f, op, nt, parent(A), dims)
end
function Base._mapreduce_dim(f, op, nt, A::AbstractDimArray, dims)
rebuild(A, Base._mapreduce_dim(f, op, nt, parent(A), dimnum(A, dims)), reducedims(A, dims))
end
function Base._mapreduce_dim(f, op, nt, A::AbstractDimArray, dims::Colon)
rebuild(A, Base._mapreduce_dim(f, op, nt, parent(A), dimnum(A, dims)), reducedims(A, dims))
function Base.mapreduce(f, op, A::AbstractDimArray; dims=Base.Colon(), kwargs...)
dims === Colon() && return mapreduce(f, op, parent(A); kwargs...)
rebuild(A, mapreduce(f, op, parent(A); dims=dimnum(A, dims), kwargs...), reducedims(A, dims))
ptiede marked this conversation as resolved.
Show resolved Hide resolved
end

function Base._mapreduce_dim(f, op, nt::Base._InitialValue, A::AbstractDimArray, dims)
rebuild(A, Base._mapreduce_dim(f, op, nt, parent(A), dimnum(A, dims)), reducedims(A, dims))
end
function Base._mapreduce_dim(f, op, nt::Base._InitialValue, A::AbstractDimArray, dims::Colon)
Base._mapreduce_dim(f, op, nt, parent(A), dims)
end
# These methods prevent mapreduce from working on the GPU so we will directly overload it.
# # These are not exported but it makes a lot of things easier using them
# function Base._mapreduce_dim(f, op, nt::NamedTuple{(),<:Tuple}, A::AbstractDimArray, dims)
# rebuild(A, Base._mapreduce_dim(f, op, nt, parent(A), dimnum(A, _astuple(dims))), reducedims(A, dims))
# end
# function Base._mapreduce_dim(f, op, nt::NamedTuple{(),<:Tuple}, A::AbstractDimArray, dims::Colon)
# Base._mapreduce_dim(f, op, nt, parent(A), dims)
# end
# function Base._mapreduce_dim(f, op, nt, A::AbstractDimArray, dims)
# rebuild(A, Base._mapreduce_dim(f, op, nt, parent(A), dimnum(A, dims)), reducedims(A, dims))
# end
# function Base._mapreduce_dim(f, op, nt, A::AbstractDimArray, dims::Colon)
# rebuild(A, Base._mapreduce_dim(f, op, nt, parent(A), dimnum(A, dims)), reducedims(A, dims))
# end

# function Base._mapreduce_dim(f, op, nt::Base._InitialValue, A::AbstractDimArray, dims)
# rebuild(A, Base._mapreduce_dim(f, op, nt, parent(A), dimnum(A, dims)), reducedims(A, dims))
# end
# function Base._mapreduce_dim(f, op, nt::Base._InitialValue, A::AbstractDimArray, dims::Colon)
# Base._mapreduce_dim(f, op, nt, parent(A), dims)
# end



# TODO: Unfortunately Base/accumulate.jl kw methods all force dims to be Integer.
Expand Down
15 changes: 14 additions & 1 deletion test/broadcast.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
using DimensionalData, Test

using JLArrays
using DimensionalData: NoLookup

# Tests taken from NamedDims. Thanks @oxinabox
Expand Down Expand Up @@ -168,6 +168,19 @@ end
@test A[DimSelectors(sub)] == C[DimSelectors(sub)]
end

@testset "GPUArray broadcast" begin
arr = JLArray(rand(64, 64))
A = DimArray(arr, (X(1.0:1.0:64), Y(-32.0:1.0:31)))
@test arr.^2 ≈ parent(A.^2)
x = 1.0:1.0:64
A .= x.^2 .+ x'
@test parent(A) ≈ x.^2 .+ x'

A .= 1.0
# all gives scalar indexing so we use mapreduce
@test mapreduce(==(1.0), *, A)
end

# @testset "Competing Wrappers" begin
# da = DimArray(ones(4), X)
# ta = TrackedArray(5 * ones(4))
Expand Down
80 changes: 79 additions & 1 deletion test/methods.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
using DimensionalData, Statistics, Test, Unitful, SparseArrays, Dates
using DimensionalData.Lookups, DimensionalData.Dimensions

using JLArrays
using LinearAlgebra: Transpose

xs = (1, X, X(), :X)
Expand Down Expand Up @@ -709,3 +709,81 @@ end
end
end
end


@testset "mapreduce" begin
@testset "Array 2D" begin
y = Y(['a', 'b', 'c'])
ti = Ti(DateTime(2021, 1):Month(1):DateTime(2021, 4))
ys = (1, Y, Y(), :Y, y)
tis = (2, Ti, Ti(), :Ti, ti)
data = [-87 -49 107 -18
24 44 -62 124
122 -11 48 -7]
A = DimArray(data, (y, ti))


@test mapreduce(identity, +, A) ≈ mapreduce(identity, +, parent(A))
@test mapreduce(x->x^3+5, +, A) ≈ mapreduce(x->x^3+5, +, parent(A))

for dims in ys
@test mapreduce(identity, +, A; dims) ≈ mapreduce(identity, +, parent(A); dims=1)
end

for dims in tis
@test mapreduce(identity, +, A; dims) ≈ mapreduce(identity, +, parent(A); dims=2)
end

@test mapreduce(identity, +, A; dims=Y) ≈ mapreduce(identity, +, parent(A); dims=1)
@test mapreduce(identity, +, A; dims=Ti) ≈ mapreduce(identity, +, parent(A); dims=2)
@test mapreduce(identity, +, A; dims=(Y, Ti)) ≈ mapreduce(identity, +, parent(A); dims=(1, 2))

init = 5.0
@test mapreduce(identity, +, A; init) ≈ mapreduce(identity, +, parent(A); init)
@test mapreduce(x->x^3+5, +, A; init) ≈ mapreduce(x->x^3+5, +, parent(A); init)
@test mapreduce(identity, +, A; dims=Y, init) ≈ mapreduce(identity, +, parent(A); dims=1, init)
@test mapreduce(identity, +, A; dims=Ti, init) ≈ mapreduce(identity, +, parent(A); dims=2, init)
@test mapreduce(identity, +, A; dims=(Y, Ti), init) ≈ mapreduce(identity, +, parent(A); dims=(1, 2), init)
end
@testset "Vector" begin
x = DimArray([56, -123, -60, -44, -64, 70, 52, -48, -74, 86], X(2:2:20))
@test mapreduce(x->x^2, +, x) ≈ mapreduce(x->x^2, +, parent(x))
@test mapreduce(identity, +, x) ≈ mapreduce(identity, +, parent(x))
@test mapreduce(identity, +, x; dims=X) ≈ mapreduce(identity, +, parent(x); dims=1)
@test mapreduce(x->x^2, +, x; dims=X) ≈ mapreduce(x->x^2, +, parent(x); dims=1)
@test mapreduce(identity, +, x; init=5.0) ≈ mapreduce(identity, +, parent(x); init=5.0)
end

@testset "JLArray" begin
y = Y(['a', 'b', 'c'])
ti = Ti(DateTime(2021, 1):Month(1):DateTime(2021, 4))
ys = (1, Y, Y(), :Y, y)
tis = (2, Ti, Ti(), :Ti, ti)
data = JLArray([-87 -49 107 -18
24 44 -62 124
122 -11 48 -7])
A = DimArray(data, (y, ti))

@test mapreduce(identity, +, A) ≈ mapreduce(identity, +, parent(A))
@test mapreduce(x->x^3+5, +, A) ≈ mapreduce(x->x^3+5, +, parent(A))
# Using parent since JLArray errors
for dims in ys
@test parent(mapreduce(identity, +, A; dims)) ≈ mapreduce(identity, +, parent(A); dims=1)
end

for dims in tis
@test parent(mapreduce(identity, +, A; dims)) ≈ mapreduce(identity, +, parent(A); dims=2)
end

@test parent(mapreduce(identity, +, A; dims=Y)) ≈ mapreduce(identity, +, parent(A); dims=1)
@test parent(mapreduce(identity, +, A; dims=Ti)) ≈ mapreduce(identity, +, parent(A); dims=2)
@test parent(mapreduce(identity, +, A; dims=(Y, Ti))) ≈ mapreduce(identity, +, parent(A); dims=(1, 2))

init = 5.0
@test mapreduce(identity, +, A; init) ≈ mapreduce(identity, +, parent(A); init)
@test mapreduce(x->x^3+5, +, A; init) ≈ mapreduce(x->x^3+5, +, parent(A); init)
@test parent(mapreduce(identity, +, A; dims=Y, init)) ≈ mapreduce(identity, +, parent(A); dims=1, init)
@test parent(mapreduce(identity, +, A; dims=Ti, init)) ≈ mapreduce(identity, +, parent(A); dims=2, init)
@test parent(mapreduce(identity, +, A; dims=(Y, Ti), init)) ≈ mapreduce(identity, +, parent(A); dims=(1, 2), init)
end
end
Loading