Skip to content

Generating seamless global daily AMSR2 soil moisture (SGD-SM) long-term products for the years 2013–2019

Notifications You must be signed in to change notification settings

qzhang95/SGD-SM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SGD-SM

  • A seamless global daily (SGD) AMSR2 soil moisture long-term (2013-2019) dataset is generated through the proposed model. This daily products include 2553 global soil moisture NetCDF4 files, starting from Jan 01, 2013 to Dec 31, 2019 (about 20GB memory after uncompressing the zip file).

  • To further validate the effectiveness of these productions, three verification ways are employed as follow: 1) In-situ validation; 2) Time-series validation; And 3) simulated missing regions validation. More validation results can be viewed at SGD-SM.

Reference

Zhang, Q., Yuan, Q., Li, J., Wang, Y., Sun, F., and Zhang, L.: Generating seamless global daily AMSR2 soil moisture (SGD-SM) long-term products for the years 2013–2019, Earth Syst. Sci. Data, 13, 1385–1401, https://doi.org/10.5194/essd-13-1385-2021, 2021.

Dataset Download

Environments and Dependencies

  • Windows 10
  • Python 3.7.4
  • netCDF4
  • numpy

Toolkit Installation

This soil moisture dataset is comprised of netCDF4 (*.nc) files. Therefore, users need to install netCDF4 toolkit before reading the data:

    pip install netCDF4
    pip install numpy

Data Reading

It should be noted that the original and reconstructed soil moisture data are both recorded in a NC file. User can read the original data, reconstructed data, and mask data as follows (more details can be viewed in Example.py):

    Data = nc.Dataset(NC_file_position)
    Ori_data = Data.variables['original_sm_c1']
    Rec_data = Data.variables['reconstructed_sm_c1']
    Ori = Ori_data[0:720, 0:1440]
    Rec = Rec_data[0:720, 0:1440]
    Mask_ori = np.ma.getmask(Ori)

Data Visualization

Users can visualize *.nc format file through Panoply software. Before visualizing, you must install Java SE Development Kit.

Contact Information

If you have any query for this work, please directly contact me.

Author: Qiang Zhang, Wuhan Unviversity.

E-mail: whuqzhang@gmail.com

Homepage: qzhang95.github.io

About

Generating seamless global daily AMSR2 soil moisture (SGD-SM) long-term products for the years 2013–2019

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages