-
Notifications
You must be signed in to change notification settings - Fork 45
Changing the hashing methodology for cache folder creation of models. #481
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -5,7 +5,7 @@ | |
# | ||
# ---------------------------------------------------------------------------- | ||
|
||
import hashlib | ||
import copy | ||
import inspect | ||
import json | ||
import logging | ||
|
@@ -23,8 +23,8 @@ | |
from QEfficient.base.pytorch_transforms import PytorchTransform | ||
from QEfficient.compile.qnn_compiler import compile as qnn_compile | ||
from QEfficient.generation.cloud_infer import QAICInferenceSession | ||
from QEfficient.utils import constants, dump_qconfig | ||
from QEfficient.utils.cache import QEFF_HOME, to_hashable | ||
from QEfficient.utils import constants, dump_qconfig, make_serializable | ||
from QEfficient.utils.cache import QEFF_HOME, hash_dict_params | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
@@ -46,12 +46,22 @@ class QEFFBaseModel(ABC): | |
def _transform_names(cls) -> List[str]: | ||
return [x.__name__ for x in cls._pytorch_transforms + cls._onnx_transforms] | ||
|
||
def __init__(self, model: torch.nn.Module) -> None: | ||
def __init__(self, model: torch.nn.Module, **kwargs) -> None: | ||
super().__init__() | ||
self.model = model | ||
|
||
# Store Model parameters to Calculate Hash for caching | ||
self.model_params = {} | ||
self.model_params = copy.deepcopy(kwargs) | ||
self.model_params["config"] = self.model.config.to_diff_dict() | ||
self.model_params["_transform_names"] = self._transform_names() | ||
|
||
if hasattr(self.model.config, "architectures"): | ||
self.model_architecture = self.model.config.architectures[0] | ||
self.onnx_path: Optional[str] = None | ||
self.qpc_path: Optional[str] = None | ||
self.qpc_session: Optional[QAICInferenceSession] = None | ||
self.pretrained_model_name_or_path = kwargs.get("pretrained_model_name_or_path", None) | ||
|
||
# Apply the transformations | ||
any_transformed = False | ||
|
@@ -68,10 +78,6 @@ def __init__(self, model: torch.nn.Module) -> None: | |
@abstractmethod | ||
def model_name(self) -> str: ... | ||
|
||
@property | ||
@abstractmethod | ||
def model_hash(self) -> str: ... | ||
|
||
@abstractmethod | ||
def export(self, export_dir: Optional[str] = None) -> Path: | ||
""" | ||
|
@@ -135,8 +141,20 @@ def _export( | |
:onnx_transform_kwargs (dict): Additional arguments to be passed to `Transform.apply` for this class. | ||
:export_dir (str): Specify the export directory. The export_dir will be suffixed with a hash corresponding to current model. | ||
""" | ||
export_dir = Path(export_dir or (QEFF_HOME / self.model_name)) | ||
export_dir = export_dir.with_name(export_dir.name + "-" + self.model_hash) | ||
export_params = {} | ||
export_params["output_names"] = output_names | ||
export_params["dynamic_axes"] = dynamic_axes | ||
|
||
self.model_params["export_params"] = export_params | ||
|
||
self.model_params.update(export_kwargs) if export_kwargs is not None else None | ||
self.model_params.update(onnx_transform_kwargs) if export_kwargs is not None else None | ||
|
||
export_dir = Path(export_dir or (QEFF_HOME / self.model_architecture / self.model_name)) | ||
|
||
export_hash = hash_dict_params(self.model_params) | ||
export_hash = export_hash.hexdigest()[:16] | ||
export_dir = export_dir.with_name(export_dir.name + "-" + export_hash) | ||
onnx_path = export_dir / f"{self.model_name}.onnx" | ||
if onnx_path.is_file(): | ||
self.onnx_path = onnx_path | ||
|
@@ -203,6 +221,20 @@ def _export( | |
onnx.save(model, onnx_path) | ||
logger.info("Transformed onnx saved") | ||
|
||
# Dumping model paramters in a JSON file after successful ONNX export | ||
model_params_json = export_dir / "model_params.json" | ||
with open(model_params_json, "w") as fp: | ||
json.dump( | ||
{ | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Same like compile create a decorator and handle all these param updates and dumping inside that. |
||
"model_params": { | ||
k: make_serializable(self.model_params[k]) for k in sorted(self.model_params.keys()) | ||
} | ||
}, | ||
fp, | ||
indent=4, | ||
) | ||
logger.info("Parameters used for export hash dumped in a JSON file successfully") | ||
|
||
except Exception as e: | ||
logger.error(f"ONNX export (or) ONNXTransforms failed: {e}") | ||
|
||
|
@@ -241,28 +273,23 @@ def _compile( | |
:mdp_ts_num_devices (int): Number of devices to partition to use Multi-Device Partitioning with tensor-slicing. | ||
:num_speculative_tokens (int, optional): Number of speculative tokens to take as input for Speculative Decoding Target Language Model. | ||
:enable_qnn (bool): Enables QNN Compilation. ``Defaults to False.`` | ||
:qnn_config (str): Path of QNN Config parameters file. Any extra parameters for QNN compilation can be passed via this file. ``Defaults to None.`` | ||
:compiler_options: Pass any compiler option as input. | ||
Any flag that is supported by `qaic-exec` can be passed. Params are converted to flags as below: | ||
:qnn_config (str): Path of QNN Config parameters file. ``Defaults to None.`` | ||
:compiler_options: Pass any compiler option as input. Any flag that is supported by `qaic-exec` can be passed. Params are converted to flags as below: | ||
- aic_num_cores=16 -> -aic-num-cores=16 | ||
- convert_to_fp16=True -> -convert-to-fp16 | ||
For QNN Compilation path, when enable_qnn is set to True, any parameter passed in compiler_options will be ignored. | ||
""" | ||
if onnx_path is None and self.onnx_path is None: | ||
self.export() | ||
|
||
self.compile_params = {} | ||
|
||
onnx_path = Path(onnx_path or self.onnx_path) | ||
compile_dir = Path(compile_dir or onnx_path.parent) | ||
qpc_path = compile_dir / "qpc" | ||
if not onnx_path.is_file(): | ||
raise FileNotFoundError(f"ONNX file not found at: {onnx_path}") | ||
|
||
if enable_qnn: | ||
if compiler_options: | ||
logger.warning( | ||
f"Extra arguments to QNN compilation are supported only via qnn_config file. Ignoring {compiler_options}" | ||
) | ||
|
||
self.qpc_path = qnn_compile( | ||
onnx_path=onnx_path, | ||
qpc_base_path=compile_dir, | ||
|
@@ -289,22 +316,26 @@ def _compile( | |
command.append(option) | ||
continue | ||
command.append(f"{option}={value}") | ||
compile_hash = hashlib.sha256(to_hashable(command)) | ||
|
||
self.compile_params["command"] = command | ||
|
||
if specializations is not None: | ||
compile_hash.update(to_hashable(specializations)) | ||
self.compile_params.update({"specializations": specializations}) | ||
|
||
if custom_io is not None: | ||
compile_hash.update(to_hashable(custom_io)) | ||
self.compile_params.update({"custom_io": custom_io}) | ||
|
||
if num_speculative_tokens: | ||
compile_hash.update(to_hashable({"num_speculative_tokens": num_speculative_tokens})) | ||
# Hash num_devices too, since default value would always be 1. | ||
compile_hash.update(to_hashable(mdp_ts_num_devices)) | ||
self.compile_params.update({"num_speculative_tokens": num_speculative_tokens}) | ||
|
||
if mdp_ts_num_devices is not None: | ||
self.compile_params.update({"mdp_ts_num_devices": mdp_ts_num_devices}) | ||
|
||
# Check if already compiled | ||
compile_hash = hash_dict_params(self.compile_params) | ||
compile_hash = compile_hash.hexdigest()[:16] | ||
compile_dir = qpc_path.with_name(qpc_path.name + "-" + compile_hash) | ||
|
||
qpc_path = compile_dir / "qpc" | ||
qpc_path.mkdir(parents=True, exist_ok=True) | ||
if qpc_path.is_dir(): | ||
|
@@ -357,6 +388,19 @@ def _compile( | |
logger.info(f"Running compiler: {' '.join(command)}") | ||
try: | ||
subprocess.run(command, capture_output=True, check=True) | ||
|
||
# Dumping compile paramters in a JSON file after successful QPC compilation | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Remove all the code related to |
||
compile_params_json = compile_dir / "compile_params.json" | ||
with open(compile_params_json, "w") as fp: | ||
json.dump( | ||
{ | ||
"compile_params": { | ||
k: make_serializable(self.compile_params[k]) for k in sorted(self.compile_params.keys()) | ||
} | ||
}, | ||
fp, | ||
indent=4, | ||
) | ||
except subprocess.CalledProcessError as e: | ||
raise RuntimeError( | ||
"\n".join( | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Handle in decorator. Lets keep our base methods clean.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Agree, lets write decorator implementation to handle this.