Skip to content

Conversation

syassami
Copy link
Collaborator

@syassami syassami commented May 4, 2023

No description provided.

@syassami syassami requested a review from veerbhan May 4, 2023 23:00
@syassami syassami force-pushed the shayan-create-wheel-release branch from 80314dd to db69408 Compare May 4, 2023 23:03
@syassami syassami force-pushed the shayan-create-wheel-release branch from db69408 to 555810b Compare May 4, 2023 23:05
@veerbhan veerbhan merged commit 37dff90 into main May 4, 2023
@veerbhan veerbhan deleted the shayan-create-wheel-release branch May 4, 2023 23:52
veerbhan pushed a commit that referenced this pull request Aug 18, 2023
Update version

Add QLinearConvTranspose CPU implementation

Added int32_t templated version of Col2im

ci: Create wheel and release upon each push to main (#1)

Shape inference for QLinearAdd and QLinearConcat

Shape inference for QLinearMul

Shape inference for QLinearLeakyReLU

Adds shape inference for remaining QLinear operators

Add unittest for QLinear shape inference

Updated shape inference to default to ONNX implementation

Applied python linter

Refactored QLinear shape inference test

Addressed PR comments

Add type inference support for custom operators

Removed formatting changes

Add shape inference for QLinearConvTranspose

Add unnittest for QLinearConvTranspose shape inference

Update README_EPU.md

- Added `--compile_no_warning_as_error  --skip_tests --skip_submodule_sync`  to build instruction.

ci: Test on Pull Request
cjm715 pushed a commit that referenced this pull request Nov 21, 2024
### Description
Add [Lean Attention](https://arxiv.org/abs/2405.10480) and the
integration with MultiHeadAttention operator for LLM in GPU.

LeanAttention speeds up self-attention for the token-generation phase
(decode-phase) of decoder-only transformer models, especially on long
context lengths.

- [x] Initial implementation of Lean Attention (by Srikant Bharadwaj)
- [x] Integration with MultiHeadAttention operator
- [x] Add parity tests
- [x] Add benchmark

#### Implementation Details

(1) Lean Attention is enabled in build for Linux, and disabled for
Windows
(2) Lean Attention is disabled by default. Need enable it through cuda
provider option sdpa_kernel, or use environment variable
`ORT_ENABLE_LEAN_ATTENTION=1`
(3) It only works for token-generation (sequence_length==1,
past_sequence_length > 0).
(4) Like flash attention, it only works in Ampere or newer GPU.

We can revisit #1 and #2 after comparing with
DecoderMaskedMultiHeadAttention and XQA kernels.

#### Benchmark

```
cd onnxruntime/test/python/transformers 
/bin/bash benchmark_mha.sh lean
```

Example outputs in H100:

Note that past and present does not share buffer for MHA for now, so we
can see low tflops. The relative ratio will change after buffer sharing
is enabled. But we expect that the order (kernel A is faster than B)
will remain the same after buffer sharing is enabled.

Note that common settings `sequence_length=1;
causal=True;attn_bias=None;cuda_graph=False` are not shown in the below
table.

batch_size | past_sequence_length | num_heads | head_size |
average_latency | tflops | kernel
-- | -- | -- | -- | -- | -- | --
1 | 512 | 16 | 64 | 0.000059 | 0.0178 | ort:flash
1 | 512 | 16 | 64 | 0.000068 | 0.0155 | ort:efficient
1 | 512 | 16 | 64 | 0.000065 | 0.0161 | ort:math
1 | 512 | 16 | 64 | 0.000060 | 0.0176 | ort:lean
1 | 512 | 32 | 128 | 0.000062 | 0.0674 | ort:flash
1 | 512 | 32 | 128 | 0.000064 | 0.0661 | ort:efficient
1 | 512 | 32 | 128 | 0.000067 | 0.0625 | ort:math
1 | 512 | 32 | 128 | 0.000062 | 0.0678 | ort:lean
1 | 1024 | 16 | 64 | 0.000061 | 0.0345 | ort:flash
1 | 1024 | 16 | 64 | 0.000086 | 0.0244 | ort:efficient
1 | 1024 | 16 | 64 | 0.000065 | 0.0322 | ort:math
1 | 1024 | 16 | 64 | 0.000063 | 0.0332 | ort:lean
1 | 1024 | 32 | 128 | 0.000075 | 0.1125 | ort:flash
1 | 1024 | 32 | 128 | 0.000088 | 0.0951 | ort:efficient
1 | 1024 | 32 | 128 | 0.000079 | 0.1068 | ort:math
1 | 1024 | 32 | 128 | 0.000072 | 0.1171 | ort:lean
1 | 2048 | 16 | 64 | 0.000069 | 0.0606 | ort:flash
1 | 2048 | 16 | 64 | 0.000125 | 0.0336 | ort:efficient
1 | 2048 | 16 | 64 | 0.000064 | 0.0655 | ort:lean
1 | 2048 | 32 | 128 | 0.000098 | 0.1720 | ort:flash
1 | 2048 | 32 | 128 | 0.000132 | 0.1270 | ort:efficient
1 | 2048 | 32 | 128 | 0.000092 | 0.1828 | ort:lean
1 | 4096 | 16 | 64 | 0.000076 | 0.1097 | ort:flash
1 | 4096 | 16 | 64 | 0.000207 | 0.0406 | ort:efficient
1 | 4096 | 16 | 64 | 0.000069 | 0.1209 | ort:lean
1 | 4096 | 32 | 128 | 0.000140 | 0.2394 | ort:flash
1 | 4096 | 32 | 128 | 0.000213 | 0.1575 | ort:efficient
1 | 4096 | 32 | 128 | 0.000139 | 0.2419 | ort:lean
1 | 8192 | 16 | 64 | 0.000104 | 0.1609 | ort:flash
1 | 8192 | 16 | 64 | 0.000392 | 0.0428 | ort:efficient
1 | 8192 | 16 | 64 | 0.000093 | 0.1809 | ort:lean
1 | 8192 | 32 | 128 | 0.000212 | 0.3160 | ort:flash
1 | 8192 | 32 | 128 | 0.000360 | 0.1866 | ort:efficient
1 | 8192 | 32 | 128 | 0.000212 | 0.3162 | ort:lean
1 | 16384 | 16 | 64 | 0.000139 | 0.2410 | ort:flash
1 | 16384 | 16 | 64 | 0.000731 | 0.0459 | ort:efficient
1 | 16384 | 16 | 64 | 0.000136 | 0.2465 | ort:lean
1 | 16384 | 32 | 128 | 0.000361 | 0.3722 | ort:flash
1 | 16384 | 32 | 128 | 0.000667 | 0.2014 | ort:efficient
1 | 16384 | 32 | 128 | 0.000357 | 0.3765 | ort:lean
1 | 32768 | 16 | 64 | 0.000210 | 0.3194 | ort:flash
1 | 32768 | 16 | 64 | 0.001428 | 0.0470 | ort:efficient
1 | 32768 | 16 | 64 | 0.000209 | 0.3211 | ort:lean
1 | 32768 | 32 | 128 | 0.000659 | 0.4074 | ort:flash
1 | 32768 | 32 | 128 | 0.001270 | 0.2114 | ort:efficient
1 | 32768 | 32 | 128 | 0.000651 | 0.4123 | ort:lean
1 | 65536 | 16 | 64 | 0.000355 | 0.3785 | ort:flash
1 | 65536 | 16 | 64 | 0.002736 | 0.0491 | ort:efficient
1 | 65536 | 16 | 64 | 0.000349 | 0.3845 | ort:lean
1 | 65536 | 32 | 128 | 0.001251 | 0.4290 | ort:flash
1 | 65536 | 32 | 128 | 0.002480 | 0.2165 | ort:efficient
1 | 65536 | 32 | 128 | 0.001239 | 0.4333 | ort:lean
4 | 512 | 16 | 64 | 0.000063 | 0.0665 | ort:flash
4 | 512 | 16 | 64 | 0.000069 | 0.0607 | ort:efficient
4 | 512 | 16 | 64 | 0.000066 | 0.0634 | ort:math
4 | 512 | 16 | 64 | 0.000062 | 0.0674 | ort:lean
4 | 512 | 32 | 128 | 0.000100 | 0.1677 | ort:flash
4 | 512 | 32 | 128 | 0.000099 | 0.1703 | ort:efficient
4 | 512 | 32 | 128 | 0.000108 | 0.1557 | ort:math
4 | 512 | 32 | 128 | 0.000092 | 0.1818 | ort:lean
4 | 1024 | 16 | 64 | 0.000077 | 0.1094 | ort:flash
4 | 1024 | 16 | 64 | 0.000099 | 0.0850 | ort:efficient
4 | 1024 | 16 | 64 | 0.000081 | 0.1038 | ort:math
4 | 1024 | 16 | 64 | 0.000072 | 0.1161 | ort:lean
4 | 1024 | 32 | 128 | 0.000143 | 0.2343 | ort:flash
4 | 1024 | 32 | 128 | 0.000137 | 0.2447 | ort:efficient
4 | 1024 | 32 | 128 | 0.000150 | 0.2245 | ort:math
4 | 1024 | 32 | 128 | 0.000135 | 0.2496 | ort:lean
4 | 2048 | 16 | 64 | 0.000096 | 0.1757 | ort:flash
4 | 2048 | 16 | 64 | 0.000156 | 0.1078 | ort:efficient
4 | 2048 | 16 | 64 | 0.000089 | 0.1892 | ort:lean
4 | 2048 | 32 | 128 | 0.000223 | 0.3010 | ort:flash
4 | 2048 | 32 | 128 | 0.000217 | 0.3101 | ort:efficient
4 | 2048 | 32 | 128 | 0.000209 | 0.3209 | ort:lean
4 | 4096 | 16 | 64 | 0.000137 | 0.2448 | ort:flash
4 | 4096 | 16 | 64 | 0.000256 | 0.1312 | ort:efficient
4 | 4096 | 16 | 64 | 0.000133 | 0.2530 | ort:lean
4 | 4096 | 32 | 128 | 0.000389 | 0.3450 | ort:flash
4 | 4096 | 32 | 128 | 0.000376 | 0.3574 | ort:efficient
4 | 4096 | 32 | 128 | 0.000354 | 0.3794 | ort:lean
4 | 8192 | 16 | 64 | 0.000210 | 0.3198 | ort:flash
4 | 8192 | 16 | 64 | 0.000453 | 0.1480 | ort:efficient
4 | 8192 | 16 | 64 | 0.000206 | 0.3260 | ort:lean
4 | 8192 | 32 | 128 | 0.000725 | 0.3705 | ort:flash
4 | 8192 | 32 | 128 | 0.000693 | 0.3874 | ort:efficient
4 | 8192 | 32 | 128 | 0.000653 | 0.4114 | ort:lean
4 | 16384 | 16 | 64 | 0.000355 | 0.3782 | ort:flash
4 | 16384 | 16 | 64 | 0.000849 | 0.1581 | ort:efficient
4 | 16384 | 16 | 64 | 0.000346 | 0.3874 | ort:lean
4 | 16384 | 32 | 128 | 0.001395 | 0.3848 | ort:flash
4 | 16384 | 32 | 128 | 0.001337 | 0.4017 | ort:efficient
4 | 16384 | 32 | 128 | 0.001252 | 0.4288 | ort:lean
4 | 32768 | 16 | 64 | 0.000647 | 0.4146 | ort:flash
4 | 32768 | 16 | 64 | 0.001649 | 0.1628 | ort:efficient
4 | 32768 | 16 | 64 | 0.000639 | 0.4204 | ort:lean
4 | 32768 | 32 | 128 | 0.002721 | 0.3947 | ort:flash
4 | 32768 | 32 | 128 | 0.002601 | 0.4128 | ort:efficient
4 | 32768 | 32 | 128 | 0.002434 | 0.4411 | ort:lean
4 | 65536 | 16 | 64 | 0.001231 | 0.4361 | ort:flash
4 | 65536 | 16 | 64 | 0.003238 | 0.1658 | ort:efficient
4 | 65536 | 16 | 64 | 0.001217 | 0.4412 | ort:lean
4 | 65536 | 32 | 128 | 0.005357 | 0.4009 | ort:flash
4 | 65536 | 32 | 128 | 0.005118 | 0.4196 | ort:efficient
4 | 65536 | 32 | 128 | 0.004781 | 0.4492 | ort:lean
16 | 512 | 16 | 64 | 0.000098 | 0.1724 | ort:flash
16 | 512 | 16 | 64 | 0.000104 | 0.1616 | ort:efficient
16 | 512 | 16 | 64 | 0.000118 | 0.1420 | ort:math
16 | 512 | 16 | 64 | 0.000087 | 0.1926 | ort:lean
16 | 512 | 32 | 128 | 0.000220 | 0.3062 | ort:flash
16 | 512 | 32 | 128 | 0.000208 | 0.3237 | ort:efficient
16 | 512 | 32 | 128 | 0.000237 | 0.2838 | ort:math
16 | 512 | 32 | 128 | 0.000209 | 0.3216 | ort:lean
16 | 1024 | 16 | 64 | 0.000136 | 0.2465 | ort:flash
16 | 1024 | 16 | 64 | 0.000150 | 0.2235 | ort:efficient
16 | 1024 | 16 | 64 | 0.000148 | 0.2266 | ort:math
16 | 1024 | 16 | 64 | 0.000129 | 0.2611 | ort:lean
16 | 1024 | 32 | 128 | 0.000367 | 0.3663 | ort:flash
16 | 1024 | 32 | 128 | 0.000351 | 0.3829 | ort:efficient
16 | 1024 | 32 | 128 | 0.000400 | 0.3357 | ort:math
16 | 1024 | 32 | 128 | 0.000349 | 0.3853 | ort:lean
16 | 2048 | 16 | 64 | 0.000209 | 0.3206 | ort:flash
16 | 2048 | 16 | 64 | 0.000243 | 0.2762 | ort:efficient
16 | 2048 | 16 | 64 | 0.000201 | 0.3338 | ort:lean
16 | 2048 | 32 | 128 | 0.000671 | 0.4002 | ort:flash
16 | 2048 | 32 | 128 | 0.000645 | 0.4163 | ort:efficient
16 | 2048 | 32 | 128 | 0.000642 | 0.4185 | ort:lean
16 | 4096 | 16 | 64 | 0.000360 | 0.3732 | ort:flash
16 | 4096 | 16 | 64 | 0.000425 | 0.3162 | ort:efficient
16 | 4096 | 16 | 64 | 0.000341 | 0.3933 | ort:lean
16 | 4096 | 32 | 128 | 0.001292 | 0.4156 | ort:flash
16 | 4096 | 32 | 128 | 0.001251 | 0.4291 | ort:efficient
16 | 4096 | 32 | 128 | 0.001241 | 0.4327 | ort:lean
16 | 8192 | 16 | 64 | 0.000666 | 0.4030 | ort:flash
16 | 8192 | 16 | 64 | 0.000804 | 0.3339 | ort:efficient
16 | 8192 | 16 | 64 | 0.000627 | 0.4283 | ort:lean
16 | 8192 | 32 | 128 | 0.002541 | 0.4226 | ort:flash
16 | 8192 | 32 | 128 | 0.002454 | 0.4376 | ort:efficient
16 | 8192 | 32 | 128 | 0.002438 | 0.4405 | ort:lean
16 | 16384 | 16 | 64 | 0.001292 | 0.4156 | ort:flash
16 | 16384 | 16 | 64 | 0.001571 | 0.3417 | ort:efficient
16 | 16384 | 16 | 64 | 0.001217 | 0.4411 | ort:lean
16 | 16384 | 32 | 128 | 0.005042 | 0.4260 | ort:flash
16 | 16384 | 32 | 128 | 0.004859 | 0.4420 | ort:efficient
16 | 16384 | 32 | 128 | 0.004827 | 0.4449 | ort:lean
16 | 32768 | 16 | 64 | 0.002537 | 0.4233 | ort:flash
16 | 32768 | 16 | 64 | 0.003103 | 0.3461 | ort:efficient
16 | 32768 | 16 | 64 | 0.002385 | 0.4501 | ort:lean
16 | 32768 | 32 | 128 | 0.009961 | 0.4312 | ort:flash
16 | 32768 | 32 | 128 | 0.009605 | 0.4472 | ort:efficient
16 | 32768 | 32 | 128 | 0.009524 | 0.4510 | ort:lean
16 | 65536 | 16 | 64 | 0.005019 | 0.4279 | ort:flash
16 | 65536 | 16 | 64 | 0.006133 | 0.3502 | ort:efficient
16 | 65536 | 16 | 64 | 0.004703 | 0.4566 | ort:lean
16 | 65536 | 32 | 128 | 0.019746 | 0.4350 | ort:flash
16 | 65536 | 32 | 128 | 0.019027 | 0.4515 | ort:efficient
16 | 65536 | 32 | 128 | 0.018864 | 0.4554 | ort:lean

### Motivation and Context
<!-- - Why is this change required? What problem does it solve?
- If it fixes an open issue, please link to the issue here. -->
rohan11235813 pushed a commit that referenced this pull request Aug 19, 2025
### Description
Add [Lean Attention](https://arxiv.org/abs/2405.10480) and the
integration with MultiHeadAttention operator for LLM in GPU.

LeanAttention speeds up self-attention for the token-generation phase
(decode-phase) of decoder-only transformer models, especially on long
context lengths.

- [x] Initial implementation of Lean Attention (by Srikant Bharadwaj)
- [x] Integration with MultiHeadAttention operator
- [x] Add parity tests
- [x] Add benchmark

#### Implementation Details

(1) Lean Attention is enabled in build for Linux, and disabled for
Windows
(2) Lean Attention is disabled by default. Need enable it through cuda
provider option sdpa_kernel, or use environment variable
`ORT_ENABLE_LEAN_ATTENTION=1`
(3) It only works for token-generation (sequence_length==1,
past_sequence_length > 0).
(4) Like flash attention, it only works in Ampere or newer GPU.

We can revisit #1 and #2 after comparing with
DecoderMaskedMultiHeadAttention and XQA kernels.

#### Benchmark

```
cd onnxruntime/test/python/transformers 
/bin/bash benchmark_mha.sh lean
```

Example outputs in H100:

Note that past and present does not share buffer for MHA for now, so we
can see low tflops. The relative ratio will change after buffer sharing
is enabled. But we expect that the order (kernel A is faster than B)
will remain the same after buffer sharing is enabled.

Note that common settings `sequence_length=1;
causal=True;attn_bias=None;cuda_graph=False` are not shown in the below
table.

batch_size | past_sequence_length | num_heads | head_size |
average_latency | tflops | kernel
-- | -- | -- | -- | -- | -- | --
1 | 512 | 16 | 64 | 0.000059 | 0.0178 | ort:flash
1 | 512 | 16 | 64 | 0.000068 | 0.0155 | ort:efficient
1 | 512 | 16 | 64 | 0.000065 | 0.0161 | ort:math
1 | 512 | 16 | 64 | 0.000060 | 0.0176 | ort:lean
1 | 512 | 32 | 128 | 0.000062 | 0.0674 | ort:flash
1 | 512 | 32 | 128 | 0.000064 | 0.0661 | ort:efficient
1 | 512 | 32 | 128 | 0.000067 | 0.0625 | ort:math
1 | 512 | 32 | 128 | 0.000062 | 0.0678 | ort:lean
1 | 1024 | 16 | 64 | 0.000061 | 0.0345 | ort:flash
1 | 1024 | 16 | 64 | 0.000086 | 0.0244 | ort:efficient
1 | 1024 | 16 | 64 | 0.000065 | 0.0322 | ort:math
1 | 1024 | 16 | 64 | 0.000063 | 0.0332 | ort:lean
1 | 1024 | 32 | 128 | 0.000075 | 0.1125 | ort:flash
1 | 1024 | 32 | 128 | 0.000088 | 0.0951 | ort:efficient
1 | 1024 | 32 | 128 | 0.000079 | 0.1068 | ort:math
1 | 1024 | 32 | 128 | 0.000072 | 0.1171 | ort:lean
1 | 2048 | 16 | 64 | 0.000069 | 0.0606 | ort:flash
1 | 2048 | 16 | 64 | 0.000125 | 0.0336 | ort:efficient
1 | 2048 | 16 | 64 | 0.000064 | 0.0655 | ort:lean
1 | 2048 | 32 | 128 | 0.000098 | 0.1720 | ort:flash
1 | 2048 | 32 | 128 | 0.000132 | 0.1270 | ort:efficient
1 | 2048 | 32 | 128 | 0.000092 | 0.1828 | ort:lean
1 | 4096 | 16 | 64 | 0.000076 | 0.1097 | ort:flash
1 | 4096 | 16 | 64 | 0.000207 | 0.0406 | ort:efficient
1 | 4096 | 16 | 64 | 0.000069 | 0.1209 | ort:lean
1 | 4096 | 32 | 128 | 0.000140 | 0.2394 | ort:flash
1 | 4096 | 32 | 128 | 0.000213 | 0.1575 | ort:efficient
1 | 4096 | 32 | 128 | 0.000139 | 0.2419 | ort:lean
1 | 8192 | 16 | 64 | 0.000104 | 0.1609 | ort:flash
1 | 8192 | 16 | 64 | 0.000392 | 0.0428 | ort:efficient
1 | 8192 | 16 | 64 | 0.000093 | 0.1809 | ort:lean
1 | 8192 | 32 | 128 | 0.000212 | 0.3160 | ort:flash
1 | 8192 | 32 | 128 | 0.000360 | 0.1866 | ort:efficient
1 | 8192 | 32 | 128 | 0.000212 | 0.3162 | ort:lean
1 | 16384 | 16 | 64 | 0.000139 | 0.2410 | ort:flash
1 | 16384 | 16 | 64 | 0.000731 | 0.0459 | ort:efficient
1 | 16384 | 16 | 64 | 0.000136 | 0.2465 | ort:lean
1 | 16384 | 32 | 128 | 0.000361 | 0.3722 | ort:flash
1 | 16384 | 32 | 128 | 0.000667 | 0.2014 | ort:efficient
1 | 16384 | 32 | 128 | 0.000357 | 0.3765 | ort:lean
1 | 32768 | 16 | 64 | 0.000210 | 0.3194 | ort:flash
1 | 32768 | 16 | 64 | 0.001428 | 0.0470 | ort:efficient
1 | 32768 | 16 | 64 | 0.000209 | 0.3211 | ort:lean
1 | 32768 | 32 | 128 | 0.000659 | 0.4074 | ort:flash
1 | 32768 | 32 | 128 | 0.001270 | 0.2114 | ort:efficient
1 | 32768 | 32 | 128 | 0.000651 | 0.4123 | ort:lean
1 | 65536 | 16 | 64 | 0.000355 | 0.3785 | ort:flash
1 | 65536 | 16 | 64 | 0.002736 | 0.0491 | ort:efficient
1 | 65536 | 16 | 64 | 0.000349 | 0.3845 | ort:lean
1 | 65536 | 32 | 128 | 0.001251 | 0.4290 | ort:flash
1 | 65536 | 32 | 128 | 0.002480 | 0.2165 | ort:efficient
1 | 65536 | 32 | 128 | 0.001239 | 0.4333 | ort:lean
4 | 512 | 16 | 64 | 0.000063 | 0.0665 | ort:flash
4 | 512 | 16 | 64 | 0.000069 | 0.0607 | ort:efficient
4 | 512 | 16 | 64 | 0.000066 | 0.0634 | ort:math
4 | 512 | 16 | 64 | 0.000062 | 0.0674 | ort:lean
4 | 512 | 32 | 128 | 0.000100 | 0.1677 | ort:flash
4 | 512 | 32 | 128 | 0.000099 | 0.1703 | ort:efficient
4 | 512 | 32 | 128 | 0.000108 | 0.1557 | ort:math
4 | 512 | 32 | 128 | 0.000092 | 0.1818 | ort:lean
4 | 1024 | 16 | 64 | 0.000077 | 0.1094 | ort:flash
4 | 1024 | 16 | 64 | 0.000099 | 0.0850 | ort:efficient
4 | 1024 | 16 | 64 | 0.000081 | 0.1038 | ort:math
4 | 1024 | 16 | 64 | 0.000072 | 0.1161 | ort:lean
4 | 1024 | 32 | 128 | 0.000143 | 0.2343 | ort:flash
4 | 1024 | 32 | 128 | 0.000137 | 0.2447 | ort:efficient
4 | 1024 | 32 | 128 | 0.000150 | 0.2245 | ort:math
4 | 1024 | 32 | 128 | 0.000135 | 0.2496 | ort:lean
4 | 2048 | 16 | 64 | 0.000096 | 0.1757 | ort:flash
4 | 2048 | 16 | 64 | 0.000156 | 0.1078 | ort:efficient
4 | 2048 | 16 | 64 | 0.000089 | 0.1892 | ort:lean
4 | 2048 | 32 | 128 | 0.000223 | 0.3010 | ort:flash
4 | 2048 | 32 | 128 | 0.000217 | 0.3101 | ort:efficient
4 | 2048 | 32 | 128 | 0.000209 | 0.3209 | ort:lean
4 | 4096 | 16 | 64 | 0.000137 | 0.2448 | ort:flash
4 | 4096 | 16 | 64 | 0.000256 | 0.1312 | ort:efficient
4 | 4096 | 16 | 64 | 0.000133 | 0.2530 | ort:lean
4 | 4096 | 32 | 128 | 0.000389 | 0.3450 | ort:flash
4 | 4096 | 32 | 128 | 0.000376 | 0.3574 | ort:efficient
4 | 4096 | 32 | 128 | 0.000354 | 0.3794 | ort:lean
4 | 8192 | 16 | 64 | 0.000210 | 0.3198 | ort:flash
4 | 8192 | 16 | 64 | 0.000453 | 0.1480 | ort:efficient
4 | 8192 | 16 | 64 | 0.000206 | 0.3260 | ort:lean
4 | 8192 | 32 | 128 | 0.000725 | 0.3705 | ort:flash
4 | 8192 | 32 | 128 | 0.000693 | 0.3874 | ort:efficient
4 | 8192 | 32 | 128 | 0.000653 | 0.4114 | ort:lean
4 | 16384 | 16 | 64 | 0.000355 | 0.3782 | ort:flash
4 | 16384 | 16 | 64 | 0.000849 | 0.1581 | ort:efficient
4 | 16384 | 16 | 64 | 0.000346 | 0.3874 | ort:lean
4 | 16384 | 32 | 128 | 0.001395 | 0.3848 | ort:flash
4 | 16384 | 32 | 128 | 0.001337 | 0.4017 | ort:efficient
4 | 16384 | 32 | 128 | 0.001252 | 0.4288 | ort:lean
4 | 32768 | 16 | 64 | 0.000647 | 0.4146 | ort:flash
4 | 32768 | 16 | 64 | 0.001649 | 0.1628 | ort:efficient
4 | 32768 | 16 | 64 | 0.000639 | 0.4204 | ort:lean
4 | 32768 | 32 | 128 | 0.002721 | 0.3947 | ort:flash
4 | 32768 | 32 | 128 | 0.002601 | 0.4128 | ort:efficient
4 | 32768 | 32 | 128 | 0.002434 | 0.4411 | ort:lean
4 | 65536 | 16 | 64 | 0.001231 | 0.4361 | ort:flash
4 | 65536 | 16 | 64 | 0.003238 | 0.1658 | ort:efficient
4 | 65536 | 16 | 64 | 0.001217 | 0.4412 | ort:lean
4 | 65536 | 32 | 128 | 0.005357 | 0.4009 | ort:flash
4 | 65536 | 32 | 128 | 0.005118 | 0.4196 | ort:efficient
4 | 65536 | 32 | 128 | 0.004781 | 0.4492 | ort:lean
16 | 512 | 16 | 64 | 0.000098 | 0.1724 | ort:flash
16 | 512 | 16 | 64 | 0.000104 | 0.1616 | ort:efficient
16 | 512 | 16 | 64 | 0.000118 | 0.1420 | ort:math
16 | 512 | 16 | 64 | 0.000087 | 0.1926 | ort:lean
16 | 512 | 32 | 128 | 0.000220 | 0.3062 | ort:flash
16 | 512 | 32 | 128 | 0.000208 | 0.3237 | ort:efficient
16 | 512 | 32 | 128 | 0.000237 | 0.2838 | ort:math
16 | 512 | 32 | 128 | 0.000209 | 0.3216 | ort:lean
16 | 1024 | 16 | 64 | 0.000136 | 0.2465 | ort:flash
16 | 1024 | 16 | 64 | 0.000150 | 0.2235 | ort:efficient
16 | 1024 | 16 | 64 | 0.000148 | 0.2266 | ort:math
16 | 1024 | 16 | 64 | 0.000129 | 0.2611 | ort:lean
16 | 1024 | 32 | 128 | 0.000367 | 0.3663 | ort:flash
16 | 1024 | 32 | 128 | 0.000351 | 0.3829 | ort:efficient
16 | 1024 | 32 | 128 | 0.000400 | 0.3357 | ort:math
16 | 1024 | 32 | 128 | 0.000349 | 0.3853 | ort:lean
16 | 2048 | 16 | 64 | 0.000209 | 0.3206 | ort:flash
16 | 2048 | 16 | 64 | 0.000243 | 0.2762 | ort:efficient
16 | 2048 | 16 | 64 | 0.000201 | 0.3338 | ort:lean
16 | 2048 | 32 | 128 | 0.000671 | 0.4002 | ort:flash
16 | 2048 | 32 | 128 | 0.000645 | 0.4163 | ort:efficient
16 | 2048 | 32 | 128 | 0.000642 | 0.4185 | ort:lean
16 | 4096 | 16 | 64 | 0.000360 | 0.3732 | ort:flash
16 | 4096 | 16 | 64 | 0.000425 | 0.3162 | ort:efficient
16 | 4096 | 16 | 64 | 0.000341 | 0.3933 | ort:lean
16 | 4096 | 32 | 128 | 0.001292 | 0.4156 | ort:flash
16 | 4096 | 32 | 128 | 0.001251 | 0.4291 | ort:efficient
16 | 4096 | 32 | 128 | 0.001241 | 0.4327 | ort:lean
16 | 8192 | 16 | 64 | 0.000666 | 0.4030 | ort:flash
16 | 8192 | 16 | 64 | 0.000804 | 0.3339 | ort:efficient
16 | 8192 | 16 | 64 | 0.000627 | 0.4283 | ort:lean
16 | 8192 | 32 | 128 | 0.002541 | 0.4226 | ort:flash
16 | 8192 | 32 | 128 | 0.002454 | 0.4376 | ort:efficient
16 | 8192 | 32 | 128 | 0.002438 | 0.4405 | ort:lean
16 | 16384 | 16 | 64 | 0.001292 | 0.4156 | ort:flash
16 | 16384 | 16 | 64 | 0.001571 | 0.3417 | ort:efficient
16 | 16384 | 16 | 64 | 0.001217 | 0.4411 | ort:lean
16 | 16384 | 32 | 128 | 0.005042 | 0.4260 | ort:flash
16 | 16384 | 32 | 128 | 0.004859 | 0.4420 | ort:efficient
16 | 16384 | 32 | 128 | 0.004827 | 0.4449 | ort:lean
16 | 32768 | 16 | 64 | 0.002537 | 0.4233 | ort:flash
16 | 32768 | 16 | 64 | 0.003103 | 0.3461 | ort:efficient
16 | 32768 | 16 | 64 | 0.002385 | 0.4501 | ort:lean
16 | 32768 | 32 | 128 | 0.009961 | 0.4312 | ort:flash
16 | 32768 | 32 | 128 | 0.009605 | 0.4472 | ort:efficient
16 | 32768 | 32 | 128 | 0.009524 | 0.4510 | ort:lean
16 | 65536 | 16 | 64 | 0.005019 | 0.4279 | ort:flash
16 | 65536 | 16 | 64 | 0.006133 | 0.3502 | ort:efficient
16 | 65536 | 16 | 64 | 0.004703 | 0.4566 | ort:lean
16 | 65536 | 32 | 128 | 0.019746 | 0.4350 | ort:flash
16 | 65536 | 32 | 128 | 0.019027 | 0.4515 | ort:efficient
16 | 65536 | 32 | 128 | 0.018864 | 0.4554 | ort:lean

### Motivation and Context
<!-- - Why is this change required? What problem does it solve?
- If it fixes an open issue, please link to the issue here. -->
rohan11235813 pushed a commit that referenced this pull request Sep 15, 2025
### Description
Add [Lean Attention](https://arxiv.org/abs/2405.10480) and the
integration with MultiHeadAttention operator for LLM in GPU.

LeanAttention speeds up self-attention for the token-generation phase
(decode-phase) of decoder-only transformer models, especially on long
context lengths.

- [x] Initial implementation of Lean Attention (by Srikant Bharadwaj)
- [x] Integration with MultiHeadAttention operator
- [x] Add parity tests
- [x] Add benchmark

#### Implementation Details

(1) Lean Attention is enabled in build for Linux, and disabled for
Windows
(2) Lean Attention is disabled by default. Need enable it through cuda
provider option sdpa_kernel, or use environment variable
`ORT_ENABLE_LEAN_ATTENTION=1`
(3) It only works for token-generation (sequence_length==1,
past_sequence_length > 0).
(4) Like flash attention, it only works in Ampere or newer GPU.

We can revisit #1 and #2 after comparing with
DecoderMaskedMultiHeadAttention and XQA kernels.

#### Benchmark

```
cd onnxruntime/test/python/transformers 
/bin/bash benchmark_mha.sh lean
```

Example outputs in H100:

Note that past and present does not share buffer for MHA for now, so we
can see low tflops. The relative ratio will change after buffer sharing
is enabled. But we expect that the order (kernel A is faster than B)
will remain the same after buffer sharing is enabled.

Note that common settings `sequence_length=1;
causal=True;attn_bias=None;cuda_graph=False` are not shown in the below
table.

batch_size | past_sequence_length | num_heads | head_size |
average_latency | tflops | kernel
-- | -- | -- | -- | -- | -- | --
1 | 512 | 16 | 64 | 0.000059 | 0.0178 | ort:flash
1 | 512 | 16 | 64 | 0.000068 | 0.0155 | ort:efficient
1 | 512 | 16 | 64 | 0.000065 | 0.0161 | ort:math
1 | 512 | 16 | 64 | 0.000060 | 0.0176 | ort:lean
1 | 512 | 32 | 128 | 0.000062 | 0.0674 | ort:flash
1 | 512 | 32 | 128 | 0.000064 | 0.0661 | ort:efficient
1 | 512 | 32 | 128 | 0.000067 | 0.0625 | ort:math
1 | 512 | 32 | 128 | 0.000062 | 0.0678 | ort:lean
1 | 1024 | 16 | 64 | 0.000061 | 0.0345 | ort:flash
1 | 1024 | 16 | 64 | 0.000086 | 0.0244 | ort:efficient
1 | 1024 | 16 | 64 | 0.000065 | 0.0322 | ort:math
1 | 1024 | 16 | 64 | 0.000063 | 0.0332 | ort:lean
1 | 1024 | 32 | 128 | 0.000075 | 0.1125 | ort:flash
1 | 1024 | 32 | 128 | 0.000088 | 0.0951 | ort:efficient
1 | 1024 | 32 | 128 | 0.000079 | 0.1068 | ort:math
1 | 1024 | 32 | 128 | 0.000072 | 0.1171 | ort:lean
1 | 2048 | 16 | 64 | 0.000069 | 0.0606 | ort:flash
1 | 2048 | 16 | 64 | 0.000125 | 0.0336 | ort:efficient
1 | 2048 | 16 | 64 | 0.000064 | 0.0655 | ort:lean
1 | 2048 | 32 | 128 | 0.000098 | 0.1720 | ort:flash
1 | 2048 | 32 | 128 | 0.000132 | 0.1270 | ort:efficient
1 | 2048 | 32 | 128 | 0.000092 | 0.1828 | ort:lean
1 | 4096 | 16 | 64 | 0.000076 | 0.1097 | ort:flash
1 | 4096 | 16 | 64 | 0.000207 | 0.0406 | ort:efficient
1 | 4096 | 16 | 64 | 0.000069 | 0.1209 | ort:lean
1 | 4096 | 32 | 128 | 0.000140 | 0.2394 | ort:flash
1 | 4096 | 32 | 128 | 0.000213 | 0.1575 | ort:efficient
1 | 4096 | 32 | 128 | 0.000139 | 0.2419 | ort:lean
1 | 8192 | 16 | 64 | 0.000104 | 0.1609 | ort:flash
1 | 8192 | 16 | 64 | 0.000392 | 0.0428 | ort:efficient
1 | 8192 | 16 | 64 | 0.000093 | 0.1809 | ort:lean
1 | 8192 | 32 | 128 | 0.000212 | 0.3160 | ort:flash
1 | 8192 | 32 | 128 | 0.000360 | 0.1866 | ort:efficient
1 | 8192 | 32 | 128 | 0.000212 | 0.3162 | ort:lean
1 | 16384 | 16 | 64 | 0.000139 | 0.2410 | ort:flash
1 | 16384 | 16 | 64 | 0.000731 | 0.0459 | ort:efficient
1 | 16384 | 16 | 64 | 0.000136 | 0.2465 | ort:lean
1 | 16384 | 32 | 128 | 0.000361 | 0.3722 | ort:flash
1 | 16384 | 32 | 128 | 0.000667 | 0.2014 | ort:efficient
1 | 16384 | 32 | 128 | 0.000357 | 0.3765 | ort:lean
1 | 32768 | 16 | 64 | 0.000210 | 0.3194 | ort:flash
1 | 32768 | 16 | 64 | 0.001428 | 0.0470 | ort:efficient
1 | 32768 | 16 | 64 | 0.000209 | 0.3211 | ort:lean
1 | 32768 | 32 | 128 | 0.000659 | 0.4074 | ort:flash
1 | 32768 | 32 | 128 | 0.001270 | 0.2114 | ort:efficient
1 | 32768 | 32 | 128 | 0.000651 | 0.4123 | ort:lean
1 | 65536 | 16 | 64 | 0.000355 | 0.3785 | ort:flash
1 | 65536 | 16 | 64 | 0.002736 | 0.0491 | ort:efficient
1 | 65536 | 16 | 64 | 0.000349 | 0.3845 | ort:lean
1 | 65536 | 32 | 128 | 0.001251 | 0.4290 | ort:flash
1 | 65536 | 32 | 128 | 0.002480 | 0.2165 | ort:efficient
1 | 65536 | 32 | 128 | 0.001239 | 0.4333 | ort:lean
4 | 512 | 16 | 64 | 0.000063 | 0.0665 | ort:flash
4 | 512 | 16 | 64 | 0.000069 | 0.0607 | ort:efficient
4 | 512 | 16 | 64 | 0.000066 | 0.0634 | ort:math
4 | 512 | 16 | 64 | 0.000062 | 0.0674 | ort:lean
4 | 512 | 32 | 128 | 0.000100 | 0.1677 | ort:flash
4 | 512 | 32 | 128 | 0.000099 | 0.1703 | ort:efficient
4 | 512 | 32 | 128 | 0.000108 | 0.1557 | ort:math
4 | 512 | 32 | 128 | 0.000092 | 0.1818 | ort:lean
4 | 1024 | 16 | 64 | 0.000077 | 0.1094 | ort:flash
4 | 1024 | 16 | 64 | 0.000099 | 0.0850 | ort:efficient
4 | 1024 | 16 | 64 | 0.000081 | 0.1038 | ort:math
4 | 1024 | 16 | 64 | 0.000072 | 0.1161 | ort:lean
4 | 1024 | 32 | 128 | 0.000143 | 0.2343 | ort:flash
4 | 1024 | 32 | 128 | 0.000137 | 0.2447 | ort:efficient
4 | 1024 | 32 | 128 | 0.000150 | 0.2245 | ort:math
4 | 1024 | 32 | 128 | 0.000135 | 0.2496 | ort:lean
4 | 2048 | 16 | 64 | 0.000096 | 0.1757 | ort:flash
4 | 2048 | 16 | 64 | 0.000156 | 0.1078 | ort:efficient
4 | 2048 | 16 | 64 | 0.000089 | 0.1892 | ort:lean
4 | 2048 | 32 | 128 | 0.000223 | 0.3010 | ort:flash
4 | 2048 | 32 | 128 | 0.000217 | 0.3101 | ort:efficient
4 | 2048 | 32 | 128 | 0.000209 | 0.3209 | ort:lean
4 | 4096 | 16 | 64 | 0.000137 | 0.2448 | ort:flash
4 | 4096 | 16 | 64 | 0.000256 | 0.1312 | ort:efficient
4 | 4096 | 16 | 64 | 0.000133 | 0.2530 | ort:lean
4 | 4096 | 32 | 128 | 0.000389 | 0.3450 | ort:flash
4 | 4096 | 32 | 128 | 0.000376 | 0.3574 | ort:efficient
4 | 4096 | 32 | 128 | 0.000354 | 0.3794 | ort:lean
4 | 8192 | 16 | 64 | 0.000210 | 0.3198 | ort:flash
4 | 8192 | 16 | 64 | 0.000453 | 0.1480 | ort:efficient
4 | 8192 | 16 | 64 | 0.000206 | 0.3260 | ort:lean
4 | 8192 | 32 | 128 | 0.000725 | 0.3705 | ort:flash
4 | 8192 | 32 | 128 | 0.000693 | 0.3874 | ort:efficient
4 | 8192 | 32 | 128 | 0.000653 | 0.4114 | ort:lean
4 | 16384 | 16 | 64 | 0.000355 | 0.3782 | ort:flash
4 | 16384 | 16 | 64 | 0.000849 | 0.1581 | ort:efficient
4 | 16384 | 16 | 64 | 0.000346 | 0.3874 | ort:lean
4 | 16384 | 32 | 128 | 0.001395 | 0.3848 | ort:flash
4 | 16384 | 32 | 128 | 0.001337 | 0.4017 | ort:efficient
4 | 16384 | 32 | 128 | 0.001252 | 0.4288 | ort:lean
4 | 32768 | 16 | 64 | 0.000647 | 0.4146 | ort:flash
4 | 32768 | 16 | 64 | 0.001649 | 0.1628 | ort:efficient
4 | 32768 | 16 | 64 | 0.000639 | 0.4204 | ort:lean
4 | 32768 | 32 | 128 | 0.002721 | 0.3947 | ort:flash
4 | 32768 | 32 | 128 | 0.002601 | 0.4128 | ort:efficient
4 | 32768 | 32 | 128 | 0.002434 | 0.4411 | ort:lean
4 | 65536 | 16 | 64 | 0.001231 | 0.4361 | ort:flash
4 | 65536 | 16 | 64 | 0.003238 | 0.1658 | ort:efficient
4 | 65536 | 16 | 64 | 0.001217 | 0.4412 | ort:lean
4 | 65536 | 32 | 128 | 0.005357 | 0.4009 | ort:flash
4 | 65536 | 32 | 128 | 0.005118 | 0.4196 | ort:efficient
4 | 65536 | 32 | 128 | 0.004781 | 0.4492 | ort:lean
16 | 512 | 16 | 64 | 0.000098 | 0.1724 | ort:flash
16 | 512 | 16 | 64 | 0.000104 | 0.1616 | ort:efficient
16 | 512 | 16 | 64 | 0.000118 | 0.1420 | ort:math
16 | 512 | 16 | 64 | 0.000087 | 0.1926 | ort:lean
16 | 512 | 32 | 128 | 0.000220 | 0.3062 | ort:flash
16 | 512 | 32 | 128 | 0.000208 | 0.3237 | ort:efficient
16 | 512 | 32 | 128 | 0.000237 | 0.2838 | ort:math
16 | 512 | 32 | 128 | 0.000209 | 0.3216 | ort:lean
16 | 1024 | 16 | 64 | 0.000136 | 0.2465 | ort:flash
16 | 1024 | 16 | 64 | 0.000150 | 0.2235 | ort:efficient
16 | 1024 | 16 | 64 | 0.000148 | 0.2266 | ort:math
16 | 1024 | 16 | 64 | 0.000129 | 0.2611 | ort:lean
16 | 1024 | 32 | 128 | 0.000367 | 0.3663 | ort:flash
16 | 1024 | 32 | 128 | 0.000351 | 0.3829 | ort:efficient
16 | 1024 | 32 | 128 | 0.000400 | 0.3357 | ort:math
16 | 1024 | 32 | 128 | 0.000349 | 0.3853 | ort:lean
16 | 2048 | 16 | 64 | 0.000209 | 0.3206 | ort:flash
16 | 2048 | 16 | 64 | 0.000243 | 0.2762 | ort:efficient
16 | 2048 | 16 | 64 | 0.000201 | 0.3338 | ort:lean
16 | 2048 | 32 | 128 | 0.000671 | 0.4002 | ort:flash
16 | 2048 | 32 | 128 | 0.000645 | 0.4163 | ort:efficient
16 | 2048 | 32 | 128 | 0.000642 | 0.4185 | ort:lean
16 | 4096 | 16 | 64 | 0.000360 | 0.3732 | ort:flash
16 | 4096 | 16 | 64 | 0.000425 | 0.3162 | ort:efficient
16 | 4096 | 16 | 64 | 0.000341 | 0.3933 | ort:lean
16 | 4096 | 32 | 128 | 0.001292 | 0.4156 | ort:flash
16 | 4096 | 32 | 128 | 0.001251 | 0.4291 | ort:efficient
16 | 4096 | 32 | 128 | 0.001241 | 0.4327 | ort:lean
16 | 8192 | 16 | 64 | 0.000666 | 0.4030 | ort:flash
16 | 8192 | 16 | 64 | 0.000804 | 0.3339 | ort:efficient
16 | 8192 | 16 | 64 | 0.000627 | 0.4283 | ort:lean
16 | 8192 | 32 | 128 | 0.002541 | 0.4226 | ort:flash
16 | 8192 | 32 | 128 | 0.002454 | 0.4376 | ort:efficient
16 | 8192 | 32 | 128 | 0.002438 | 0.4405 | ort:lean
16 | 16384 | 16 | 64 | 0.001292 | 0.4156 | ort:flash
16 | 16384 | 16 | 64 | 0.001571 | 0.3417 | ort:efficient
16 | 16384 | 16 | 64 | 0.001217 | 0.4411 | ort:lean
16 | 16384 | 32 | 128 | 0.005042 | 0.4260 | ort:flash
16 | 16384 | 32 | 128 | 0.004859 | 0.4420 | ort:efficient
16 | 16384 | 32 | 128 | 0.004827 | 0.4449 | ort:lean
16 | 32768 | 16 | 64 | 0.002537 | 0.4233 | ort:flash
16 | 32768 | 16 | 64 | 0.003103 | 0.3461 | ort:efficient
16 | 32768 | 16 | 64 | 0.002385 | 0.4501 | ort:lean
16 | 32768 | 32 | 128 | 0.009961 | 0.4312 | ort:flash
16 | 32768 | 32 | 128 | 0.009605 | 0.4472 | ort:efficient
16 | 32768 | 32 | 128 | 0.009524 | 0.4510 | ort:lean
16 | 65536 | 16 | 64 | 0.005019 | 0.4279 | ort:flash
16 | 65536 | 16 | 64 | 0.006133 | 0.3502 | ort:efficient
16 | 65536 | 16 | 64 | 0.004703 | 0.4566 | ort:lean
16 | 65536 | 32 | 128 | 0.019746 | 0.4350 | ort:flash
16 | 65536 | 32 | 128 | 0.019027 | 0.4515 | ort:efficient
16 | 65536 | 32 | 128 | 0.018864 | 0.4554 | ort:lean

### Motivation and Context
<!-- - Why is this change required? What problem does it solve?
- If it fixes an open issue, please link to the issue here. -->
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants