forked from microsoft/Bringing-Old-Photos-Back-to-Life
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8 changed files
with
718 additions
and
31 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# Licensed under the MIT License. | ||
|
||
import torch | ||
import numpy as np | ||
import skimage.io as io | ||
|
||
# from FaceSDK.face_sdk import FaceDetection | ||
# from face_sdk import FaceDetection | ||
import matplotlib.pyplot as plt | ||
from matplotlib.patches import Rectangle | ||
from skimage.transform import SimilarityTransform | ||
from skimage.transform import warp | ||
from PIL import Image | ||
import torch.nn.functional as F | ||
import torchvision as tv | ||
import torchvision.utils as vutils | ||
import time | ||
import cv2 | ||
import os | ||
from skimage import img_as_ubyte | ||
import json | ||
import argparse | ||
import dlib | ||
|
||
|
||
def _standard_face_pts(): | ||
pts = ( | ||
np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32) / 256.0 | ||
- 1.0 | ||
) | ||
|
||
return np.reshape(pts, (5, 2)) | ||
|
||
|
||
def _origin_face_pts(): | ||
pts = np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32) | ||
|
||
return np.reshape(pts, (5, 2)) | ||
|
||
|
||
def get_landmark(face_landmarks, id): | ||
part = face_landmarks.part(id) | ||
x = part.x | ||
y = part.y | ||
|
||
return (x, y) | ||
|
||
|
||
def search(face_landmarks): | ||
|
||
x1, y1 = get_landmark(face_landmarks, 36) | ||
x2, y2 = get_landmark(face_landmarks, 39) | ||
x3, y3 = get_landmark(face_landmarks, 42) | ||
x4, y4 = get_landmark(face_landmarks, 45) | ||
|
||
x_nose, y_nose = get_landmark(face_landmarks, 30) | ||
|
||
x_left_mouth, y_left_mouth = get_landmark(face_landmarks, 48) | ||
x_right_mouth, y_right_mouth = get_landmark(face_landmarks, 54) | ||
|
||
x_left_eye = int((x1 + x2) / 2) | ||
y_left_eye = int((y1 + y2) / 2) | ||
x_right_eye = int((x3 + x4) / 2) | ||
y_right_eye = int((y3 + y4) / 2) | ||
|
||
results = np.array( | ||
[ | ||
[x_left_eye, y_left_eye], | ||
[x_right_eye, y_right_eye], | ||
[x_nose, y_nose], | ||
[x_left_mouth, y_left_mouth], | ||
[x_right_mouth, y_right_mouth], | ||
] | ||
) | ||
|
||
return results | ||
|
||
|
||
def compute_transformation_matrix(img, landmark, normalize, target_face_scale=1.0): | ||
|
||
std_pts = _standard_face_pts() # [-1,1] | ||
target_pts = (std_pts * target_face_scale + 1) / 2 * 512.0 | ||
|
||
# print(target_pts) | ||
|
||
h, w, c = img.shape | ||
if normalize == True: | ||
landmark[:, 0] = landmark[:, 0] / h * 2 - 1.0 | ||
landmark[:, 1] = landmark[:, 1] / w * 2 - 1.0 | ||
|
||
# print(landmark) | ||
|
||
affine = SimilarityTransform() | ||
|
||
affine.estimate(target_pts, landmark) | ||
|
||
return affine.params | ||
|
||
|
||
def show_detection(image, box, landmark): | ||
plt.imshow(image) | ||
print(box[2] - box[0]) | ||
plt.gca().add_patch( | ||
Rectangle( | ||
(box[1], box[0]), box[2] - box[0], box[3] - box[1], linewidth=1, edgecolor="r", facecolor="none" | ||
) | ||
) | ||
plt.scatter(landmark[0][0], landmark[0][1]) | ||
plt.scatter(landmark[1][0], landmark[1][1]) | ||
plt.scatter(landmark[2][0], landmark[2][1]) | ||
plt.scatter(landmark[3][0], landmark[3][1]) | ||
plt.scatter(landmark[4][0], landmark[4][1]) | ||
plt.show() | ||
|
||
|
||
def affine2theta(affine, input_w, input_h, target_w, target_h): | ||
# param = np.linalg.inv(affine) | ||
param = affine | ||
theta = np.zeros([2, 3]) | ||
theta[0, 0] = param[0, 0] * input_h / target_h | ||
theta[0, 1] = param[0, 1] * input_w / target_h | ||
theta[0, 2] = (2 * param[0, 2] + param[0, 0] * input_h + param[0, 1] * input_w) / target_h - 1 | ||
theta[1, 0] = param[1, 0] * input_h / target_w | ||
theta[1, 1] = param[1, 1] * input_w / target_w | ||
theta[1, 2] = (2 * param[1, 2] + param[1, 0] * input_h + param[1, 1] * input_w) / target_w - 1 | ||
return theta | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--url", type=str, default="/home/jingliao/ziyuwan/celebrities", help="input") | ||
parser.add_argument( | ||
"--save_url", type=str, default="/home/jingliao/ziyuwan/celebrities_detected_face_reid", help="output" | ||
) | ||
opts = parser.parse_args() | ||
|
||
url = opts.url | ||
save_url = opts.save_url | ||
|
||
### If the origin url is None, then we don't need to reid the origin image | ||
|
||
os.makedirs(url, exist_ok=True) | ||
os.makedirs(save_url, exist_ok=True) | ||
|
||
face_detector = dlib.get_frontal_face_detector() | ||
landmark_locator = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") | ||
|
||
count = 0 | ||
|
||
map_id = {} | ||
for x in os.listdir(url): | ||
img_url = os.path.join(url, x) | ||
pil_img = Image.open(img_url).convert("RGB") | ||
|
||
image = np.array(pil_img) | ||
|
||
start = time.time() | ||
faces = face_detector(image) | ||
done = time.time() | ||
|
||
if len(faces) == 0: | ||
print("Warning: There is no face in %s" % (x)) | ||
continue | ||
|
||
print(len(faces)) | ||
|
||
if len(faces) > 0: | ||
for face_id in range(len(faces)): | ||
current_face = faces[face_id] | ||
face_landmarks = landmark_locator(image, current_face) | ||
current_fl = search(face_landmarks) | ||
|
||
affine = compute_transformation_matrix(image, current_fl, False, target_face_scale=1.3) | ||
aligned_face = warp(image, affine, output_shape=(512, 512, 3)) | ||
img_name = x[:-4] + "_" + str(face_id + 1) | ||
io.imsave(os.path.join(save_url, img_name + ".png"), img_as_ubyte(aligned_face)) | ||
|
||
count += 1 | ||
|
||
if count % 1000 == 0: | ||
print("%d have finished ..." % (count)) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.