-
Notifications
You must be signed in to change notification settings - Fork 7.2k
Add --backend and --use-v2 support to detection refs #7732
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 1 commit
6443e6a
d10dd56
f956d01
06ab751
c6913d2
72da655
56dc431
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,73 +1,109 @@ | ||
from collections import defaultdict | ||
|
||
import torch | ||
import transforms as T | ||
import transforms as reference_transforms | ||
|
||
|
||
def get_modules(use_v2): | ||
# We need a protected import to avoid the V2 warning in case just V1 is used | ||
if use_v2: | ||
import torchvision.datapoints | ||
import torchvision.transforms.v2 | ||
|
||
return torchvision.transforms.v2, torchvision.datapoints | ||
else: | ||
return reference_transforms, None | ||
|
||
|
||
class DetectionPresetTrain: | ||
def __init__(self, *, data_augmentation, hflip_prob=0.5, mean=(123.0, 117.0, 104.0)): | ||
def __init__( | ||
self, | ||
*, | ||
data_augmentation, | ||
hflip_prob=0.5, | ||
mean=(123.0, 117.0, 104.0), | ||
backend="pil", | ||
use_v2=False, | ||
): | ||
|
||
T, datapoints = get_modules(use_v2) | ||
|
||
transforms = [] | ||
backend = backend.lower() | ||
if backend == "datapoint": | ||
transforms.append(T.ToImageTensor()) | ||
elif backend == "tensor": | ||
transforms.append(T.PILToTensor()) | ||
elif backend != "pil": | ||
raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") | ||
NicolasHug marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
if data_augmentation == "hflip": | ||
self.transforms = T.Compose( | ||
[ | ||
T.RandomHorizontalFlip(p=hflip_prob), | ||
T.PILToTensor(), | ||
T.ConvertImageDtype(torch.float), | ||
] | ||
) | ||
transforms += [T.RandomHorizontalFlip(p=hflip_prob)] | ||
elif data_augmentation == "lsj": | ||
self.transforms = T.Compose( | ||
[ | ||
T.ScaleJitter(target_size=(1024, 1024)), | ||
T.FixedSizeCrop(size=(1024, 1024), fill=mean), | ||
T.RandomHorizontalFlip(p=hflip_prob), | ||
T.PILToTensor(), | ||
T.ConvertImageDtype(torch.float), | ||
] | ||
) | ||
transforms += [ | ||
T.ScaleJitter(target_size=(1024, 1024), antialias=True), | ||
# TODO: FixedSizeCrop below doesn't work on tensors! | ||
reference_transforms.FixedSizeCrop(size=(1024, 1024), fill=mean), | ||
Comment on lines
+47
to
+48
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. In v2 we have |
||
T.RandomHorizontalFlip(p=hflip_prob), | ||
] | ||
elif data_augmentation == "multiscale": | ||
self.transforms = T.Compose( | ||
[ | ||
T.RandomShortestSize( | ||
min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333 | ||
), | ||
T.RandomHorizontalFlip(p=hflip_prob), | ||
T.PILToTensor(), | ||
T.ConvertImageDtype(torch.float), | ||
] | ||
) | ||
transforms += [ | ||
T.RandomShortestSize(min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333), | ||
T.RandomHorizontalFlip(p=hflip_prob), | ||
] | ||
elif data_augmentation == "ssd": | ||
self.transforms = T.Compose( | ||
[ | ||
T.RandomPhotometricDistort(), | ||
T.RandomZoomOut(fill=list(mean)), | ||
T.RandomIoUCrop(), | ||
T.RandomHorizontalFlip(p=hflip_prob), | ||
T.PILToTensor(), | ||
T.ConvertImageDtype(torch.float), | ||
] | ||
) | ||
fill = defaultdict(lambda: mean, {datapoints.Mask: 0}) if use_v2 else list(mean) | ||
transforms += [ | ||
T.RandomPhotometricDistort(), | ||
T.RandomZoomOut(fill=fill), | ||
T.RandomIoUCrop(), | ||
T.RandomHorizontalFlip(p=hflip_prob), | ||
] | ||
elif data_augmentation == "ssdlite": | ||
self.transforms = T.Compose( | ||
[ | ||
T.RandomIoUCrop(), | ||
T.RandomHorizontalFlip(p=hflip_prob), | ||
T.PILToTensor(), | ||
T.ConvertImageDtype(torch.float), | ||
] | ||
) | ||
transforms += [ | ||
T.RandomIoUCrop(), | ||
T.RandomHorizontalFlip(p=hflip_prob), | ||
] | ||
else: | ||
raise ValueError(f'Unknown data augmentation policy "{data_augmentation}"') | ||
|
||
if backend == "pil": | ||
# Note: we could just convert to pure tensors even in v2. | ||
transforms += [T.ToImageTensor() if use_v2 else T.PILToTensor()] | ||
|
||
transforms += [T.ConvertImageDtype(torch.float)] | ||
|
||
if use_v2: | ||
transforms += [ | ||
T.ConvertBoundingBoxFormat(datapoints.BoundingBoxFormat.XYXY), | ||
T.SanitizeBoundingBox(), | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Do we also need There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I don't think so since we established that all transforms should clamp already (those that need to, at least)? |
||
] | ||
|
||
self.transforms = T.Compose(transforms) | ||
|
||
def __call__(self, img, target): | ||
return self.transforms(img, target) | ||
|
||
|
||
class DetectionPresetEval: | ||
def __init__(self): | ||
self.transforms = T.Compose( | ||
[ | ||
T.PILToTensor(), | ||
T.ConvertImageDtype(torch.float), | ||
] | ||
) | ||
def __init__(self, backend="pil", use_v2=False): | ||
T, _ = get_modules(use_v2) | ||
transforms = [] | ||
backend = backend.lower() | ||
# Conversion may look a bit weird but the assumption of this transform is that the input is always a PIL image | ||
# TODO: Is that still true when using v2, from the dataset??????? | ||
if backend == "pil": | ||
# Note: we could just convert to pure tensors even in v2? | ||
transforms += [T.ToImageTensor() if use_v2 else T.PILToTensor()] | ||
elif backend == "tensor": | ||
transforms += [T.PILToTensor()] | ||
elif backend == "datapoint": | ||
transforms += [T.ToImageTensor()] | ||
else: | ||
raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") | ||
|
||
transforms += [T.ConvertImageDtype(torch.float)] | ||
self.transforms = T.Compose(transforms) | ||
|
||
def __call__(self, img, target): | ||
return self.transforms(img, target) |
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -293,11 +293,13 @@ def __init__( | |
target_size: Tuple[int, int], | ||
scale_range: Tuple[float, float] = (0.1, 2.0), | ||
interpolation: InterpolationMode = InterpolationMode.BILINEAR, | ||
antialias=True, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Had to add antialias support because it'd be False otherwise by default for tensors. There's no BC requirements so we could just hard-code There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. IDC. Unless there is some other opinion, let's keep it the way it is. |
||
): | ||
super().__init__() | ||
self.target_size = target_size | ||
self.scale_range = scale_range | ||
self.interpolation = interpolation | ||
self.antialias = antialias | ||
|
||
def forward( | ||
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None | ||
|
@@ -315,14 +317,17 @@ def forward( | |
new_width = int(orig_width * r) | ||
new_height = int(orig_height * r) | ||
|
||
image = F.resize(image, [new_height, new_width], interpolation=self.interpolation) | ||
image = F.resize(image, [new_height, new_width], interpolation=self.interpolation, antialias=self.antialias) | ||
|
||
if target is not None: | ||
target["boxes"][:, 0::2] *= new_width / orig_width | ||
target["boxes"][:, 1::2] *= new_height / orig_height | ||
if "masks" in target: | ||
target["masks"] = F.resize( | ||
target["masks"], [new_height, new_width], interpolation=InterpolationMode.NEAREST | ||
target["masks"], | ||
[new_height, new_width], | ||
interpolation=InterpolationMode.NEAREST, | ||
antialias=self.antialias, | ||
) | ||
|
||
return image, target | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I just did
s/module/T/
in the file to make it consistent with the detection one