Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add shufflenetv2 1.5 and 2.0 weights #5906

Merged
merged 16 commits into from
Apr 28, 2022
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 6 additions & 2 deletions docs/source/models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -176,8 +176,10 @@ Densenet-201 76.896 93.370
Densenet-161 77.138 93.560
Inception v3 77.294 93.450
GoogleNet 69.778 89.530
ShuffleNet V2 x1.0 69.362 88.316
ShuffleNet V2 x0.5 60.552 81.746
ShuffleNet V2 x1.0 69.362 88.316
ShuffleNet V2 x1.5 72.996 91.086
ShuffleNet V2 x2.0 76.230 93.006
MobileNet V2 71.878 90.286
MobileNet V3 Large 74.042 91.340
MobileNet V3 Small 67.668 87.402
Expand Down Expand Up @@ -499,8 +501,10 @@ Model Acc@1 Acc@5
================================ ============= =============
MobileNet V2 71.658 90.150
MobileNet V3 Large 73.004 90.858
ShuffleNet V2 x1.0 68.360 87.582
ShuffleNet V2 x0.5 57.972 79.780
ShuffleNet V2 x1.0 68.360 87.582
ShuffleNet V2 x1.5 72.052 90.700
ShuffleNet V2 x2.0 75.354 92.488
YosuaMichael marked this conversation as resolved.
Show resolved Hide resolved
ResNet 18 69.494 88.882
ResNet 50 75.920 92.814
ResNext 101 32x8d 78.986 94.480
Expand Down
7 changes: 6 additions & 1 deletion hubconf.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,12 @@
deeplabv3_mobilenet_v3_large,
lraspp_mobilenet_v3_large,
)
from torchvision.models.shufflenetv2 import shufflenet_v2_x0_5, shufflenet_v2_x1_0
from torchvision.models.shufflenetv2 import (
shufflenet_v2_x0_5,
shufflenet_v2_x1_0,
shufflenet_v2_x1_5,
shufflenet_v2_x2_0,
)
from torchvision.models.squeezenet import squeezenet1_0, squeezenet1_1
from torchvision.models.vgg import vgg11, vgg13, vgg16, vgg19, vgg11_bn, vgg13_bn, vgg16_bn, vgg19_bn
from torchvision.models.vision_transformer import (
Expand Down
12 changes: 12 additions & 0 deletions references/classification/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -236,6 +236,18 @@ torchrun --nproc_per_node=8 train.py\
Note that `--val-resize-size` was optimized in a post-training step, see their `Weights` entry for the exact value.


### ShuffleNet V2
```
torchrun --nproc_per_node=8 train.py \
--batch-size=128 \
--lr=0.5 --lr-scheduler=cosineannealinglr --lr-warmup-epochs=5 --lr-warmup-method=linear \
--auto-augment=ta_wide --epochs=600 --random-erase=0.1 --weight-decay=0.00002 \
--norm-weight-decay=0.0 --label-smoothing=0.1 --mixup-alpha=0.2 --cutmix-alpha=1.0 \
--train-crop-size=176 --model-ema --val-resize-size=232 --ra-sampler --ra-reps=4
```
Here `$MODEL` is either `shufflenet_v2_x1_5` or `shufflenet_v2_x2_0`.


YosuaMichael marked this conversation as resolved.
Show resolved Hide resolved
## Mixed precision training
Automatic Mixed Precision (AMP) training on GPU for Pytorch can be enabled with the [torch.cuda.amp](https://pytorch.org/docs/stable/amp.html?highlight=amp#module-torch.cuda.amp).

Expand Down
95 changes: 94 additions & 1 deletion torchvision/models/quantization/shufflenetv2.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,16 +10,25 @@
from .._api import WeightsEnum, Weights
from .._meta import _IMAGENET_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_named_param
from ..shufflenetv2 import ShuffleNet_V2_X0_5_Weights, ShuffleNet_V2_X1_0_Weights
from ..shufflenetv2 import (
ShuffleNet_V2_X0_5_Weights,
ShuffleNet_V2_X1_0_Weights,
ShuffleNet_V2_X1_5_Weights,
ShuffleNet_V2_X2_0_Weights,
)
from .utils import _fuse_modules, _replace_relu, quantize_model


__all__ = [
"QuantizableShuffleNetV2",
"ShuffleNet_V2_X0_5_QuantizedWeights",
"ShuffleNet_V2_X1_0_QuantizedWeights",
"ShuffleNet_V2_X1_5_QuantizedWeights",
"ShuffleNet_V2_X2_0_QuantizedWeights",
"shufflenet_v2_x0_5",
"shufflenet_v2_x1_0",
"shufflenet_v2_x1_5",
"shufflenet_v2_x2_0",
]


Expand Down Expand Up @@ -143,6 +152,42 @@ class ShuffleNet_V2_X1_0_QuantizedWeights(WeightsEnum):
DEFAULT = IMAGENET1K_FBGEMM_V1


class ShuffleNet_V2_X1_5_QuantizedWeights(WeightsEnum):
IMAGENET1K_FBGEMM_V1 = Weights(
url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_5_fbgemm-d7401f05.pth",
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
meta={
**_COMMON_META,
"recipe": "https://github.com/pytorch/vision/pull/5906",
"num_params": 3503624,
"unquantized": ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1,
"metrics": {
"acc@1": 72.052,
"acc@5": 90.700,
YosuaMichael marked this conversation as resolved.
Show resolved Hide resolved
},
},
)
DEFAULT = IMAGENET1K_FBGEMM_V1


class ShuffleNet_V2_X2_0_QuantizedWeights(WeightsEnum):
IMAGENET1K_FBGEMM_V1 = Weights(
url="https://download.pytorch.org/models/quantized/shufflenetv2_x2_0_fbgemm-5cac526c.pth",
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
meta={
**_COMMON_META,
"recipe": "https://github.com/pytorch/vision/pull/5906",
"num_params": 7393996,
"unquantized": ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1,
"metrics": {
"acc@1": 75.354,
"acc@5": 92.488,
},
},
)
DEFAULT = IMAGENET1K_FBGEMM_V1


@handle_legacy_interface(
weights=(
"pretrained",
Expand Down Expand Up @@ -205,3 +250,51 @@ def shufflenet_v2_x1_0(
return _shufflenetv2(
[4, 8, 4], [24, 116, 232, 464, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
)


def shufflenet_v2_x1_5(
*,
weights: Optional[Union[ShuffleNet_V2_X1_5_QuantizedWeights, ShuffleNet_V2_X1_5_Weights]] = None,
progress: bool = True,
quantize: bool = False,
**kwargs: Any,
) -> QuantizableShuffleNetV2:
"""
Constructs a ShuffleNetV2 with 1.5x output channels, as described in
`"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
<https://arxiv.org/abs/1807.11164>`_.

Args:
weights (ShuffleNet_V2_X1_5_QuantizedWeights or ShuffleNet_V2_X1_5_Weights, optional): The pretrained
weights for the model
progress (bool): If True, displays a progress bar of the download to stderr
quantize (bool): If True, return a quantized version of the model
"""
weights = (ShuffleNet_V2_X1_5_QuantizedWeights if quantize else ShuffleNet_V2_X1_5_Weights).verify(weights)
return _shufflenetv2(
[4, 8, 4], [24, 176, 352, 704, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
)


def shufflenet_v2_x2_0(
*,
weights: Optional[Union[ShuffleNet_V2_X2_0_QuantizedWeights, ShuffleNet_V2_X2_0_Weights]] = None,
progress: bool = True,
quantize: bool = False,
**kwargs: Any,
) -> QuantizableShuffleNetV2:
"""
Constructs a ShuffleNetV2 with 2.0x output channels, as described in
`"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
<https://arxiv.org/abs/1807.11164>`_.

Args:
weights (ShuffleNet_V2_X2_0_QuantizedWeights or ShuffleNet_V2_X2_0_Weights, optional): The pretrained
weights for the model
progress (bool): If True, displays a progress bar of the download to stderr
quantize (bool): If True, return a quantized version of the model
"""
weights = (ShuffleNet_V2_X2_0_QuantizedWeights if quantize else ShuffleNet_V2_X2_0_Weights).verify(weights)
return _shufflenetv2(
[4, 8, 4], [24, 244, 488, 976, 2048], weights=weights, progress=progress, quantize=quantize, **kwargs
)
30 changes: 28 additions & 2 deletions torchvision/models/shufflenetv2.py
Original file line number Diff line number Diff line change
Expand Up @@ -223,11 +223,37 @@ class ShuffleNet_V2_X1_0_Weights(WeightsEnum):


class ShuffleNet_V2_X1_5_Weights(WeightsEnum):
pass
IMAGENET1K_V1 = Weights(
url="https://download.pytorch.org/models/shufflenetv2_x1_5-3c479a10.pth",
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
meta={
**_COMMON_META,
"recipe": "https://github.com/pytorch/vision/pull/5906",
"num_params": 3503624,
"metrics": {
"acc@1": 72.996,
"acc@5": 91.086,
},
},
)
DEFAULT = IMAGENET1K_V1


class ShuffleNet_V2_X2_0_Weights(WeightsEnum):
pass
IMAGENET1K_V1 = Weights(
url="https://download.pytorch.org/models/shufflenetv2_x2_0-8be3c8ee.pth",
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
meta={
**_COMMON_META,
"recipe": "https://github.com/pytorch/vision/pull/5906",
"num_params": 7393996,
"metrics": {
"acc@1": 76.230,
"acc@5": 93.006,
},
},
)
DEFAULT = IMAGENET1K_V1


@handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1))
Expand Down