Skip to content

Adding dataset Tiny-Imagenet #6127

Open
@towzeur

Description

@towzeur

🚀 The feature

Hello,

I would like to contribute to torchvision by providing a implementation of Tiny-Imagenet dataset.

home : https://www.kaggle.com/c/tiny-imagenet
paper : http://vision.stanford.edu/teaching/cs231n/reports/2015/pdfs/yle_project.pdf
zip : http://cs231n.stanford.edu/tiny-imagenet-200.zip

This challenge is part of Stanford Class CS 231N.
Label Classes and Bounding Boxes are provided

details:
classes : 200
image_size : 64x64x3
bbox : x0, y0, x1, y1 for each image
train split : 100 000 (500 per class)
val split : 10 000 (50 per class)
test split : 10 000 (50 per class)

Motivation, pitch

Note: the original test split doesn't have targets and bboxes.
Thus, in this implementation, I used the val split when passing train=True.

Features:

  • fast loading by creating numpy files (npy/*.npy) from the raw folder/image datasets
  • can leverage bbox

Structure:

root
├───tiny-imagenet-200.zip
├───tiny-imagenet-200
│   ├───npy <-- generated
│   │       ├───test_bboxes.npy
│   │       ├───test_data.npy
│   │       ├───test_targets.npy
│   │       ├───train_bboxes.npy
│   │       ├───train_data.npy
│   │       ├───train_targets.npy
│   ├───test
│   ├───train
│   ├───val
│   ├───words.txt
│   └───wnids.txt

Here the implementation:
towzeur@a67feb5

Alternatives

No response

Additional context

No response

cc @pmeier @YosuaMichael

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions