Description
🚀 The feature
Hello,
I would like to contribute to torchvision by providing a implementation of Tiny-Imagenet dataset.
home : https://www.kaggle.com/c/tiny-imagenet
paper : http://vision.stanford.edu/teaching/cs231n/reports/2015/pdfs/yle_project.pdf
zip : http://cs231n.stanford.edu/tiny-imagenet-200.zip
This challenge is part of Stanford Class CS 231N.
Label Classes and Bounding Boxes are provided
details:
classes : 200
image_size : 64x64x3
bbox : x0, y0, x1, y1 for each image
train split : 100 000 (500 per class)
val split : 10 000 (50 per class)
test split : 10 000 (50 per class)
Motivation, pitch
Note: the original test split doesn't have targets and bboxes.
Thus, in this implementation, I used the val split when passing train=True
.
Features:
- fast loading by creating numpy files (npy/*.npy) from the raw folder/image datasets
- can leverage bbox
Structure:
root
├───tiny-imagenet-200.zip
├───tiny-imagenet-200
│ ├───npy <-- generated
│ │ ├───test_bboxes.npy
│ │ ├───test_data.npy
│ │ ├───test_targets.npy
│ │ ├───train_bboxes.npy
│ │ ├───train_data.npy
│ │ ├───train_targets.npy
│ ├───test
│ ├───train
│ ├───val
│ ├───words.txt
│ └───wnids.txt
Here the implementation:
towzeur@a67feb5
Alternatives
No response
Additional context
No response