Open
Description
def mapper(dataset_dict):
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
image = utils.read_image(dataset_dict["file_name"], format="BGR")
transform_list = [
T.ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice')
,T.RandomRotation([10,15])
]
image, transforms = T.apply_transform_gens(transform_list, image)
dataset_dict["image"] = torch.as_tensor(image.transpose(2, 0, 1).astype("float32"))
#print('image_shape->',image.shape,image.shape[:2])
annos = [
utils.transform_instance_annotations(obj, transforms, image.shape[:2])
for obj in dataset_dict.pop("annotations")
if obj.get("iscrowd", 0) == 0
]
instances = utils.annotations_to_instances(annos, image.shape[:2])
dataset_dict["instances"] = instances
#dataset_dict["instances"] = utils.filter_empty_instances(instances)
return dataset_dict
this is my mapper for augmentation.
is T.RandomRotation([10,15]) happen every image? or by some change.
if it apply to every images. how should I apply it by only some percentage?
cc @vfdev-5