Skip to content

[WIP] Gemma3 support. #2485

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 31 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
107 changes: 107 additions & 0 deletions recipes/configs/gemma3/12B_full.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
# Config for multi-device full finetuning in full_finetune_distributed.py
# using a gemma3 12B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download google/gemma-3-12b-it --ignore-patterns "gemma-3-12b-it.gguf" --output-dir /tmp/gemma-3-12b-it --hf-token <HF_TOKEN>
#
# To launch on 4 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 4 full_finetune_distributed --config gemma3/12B_full
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nnodes 1 --nproc_per_node 4 full_finetune_distributed --config gemma3/12B_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only when the model is being fine-tuned on 2+ GPUs.


output_dir: /tmp/torchtune/gemma3_12B/full # /tmp may be deleted by your system. Change it to your preference.

# Tokenizer
tokenizer:
_component_: torchtune.models.gemma.gemma_tokenizer
path: /tmp/gemma-3-12b-it/tokenizer.model

# Dataset
dataset:
_component_: torchtune.datasets.alpaca_dataset
packed: False # True increases speed
seed: null
shuffle: True

# Model Arguments
model:
_component_: torchtune.models.gemma3.gemma3_12b

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/gemma-3-12b-it/
checkpoint_files: [
model-00001-of-00002.safetensors,
model-00002-of-00005.safetensors,
model-00003-of-00005.safetensors,
model-00004-of-00005.safetensors,
model-00005-of-00005.safetensors,
]
recipe_checkpoint: null
output_dir: ${output_dir}
model_type: GEMMA3
resume_from_checkpoint: False

# Fine-tuning arguments
batch_size: 2
epochs: 1
optimizer:
_component_: torch.optim.AdamW
fused: True
lr: 2e-5
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
max_steps_per_epoch: null
gradient_accumulation_steps: 1 # Use to increase effective batch size
clip_grad_norm: null
compile: False # torch.compile the model + loss, True increases speed + decreases memory
optimizer_in_bwd: False # True saves memory. Requires gradient_accumulation_steps=1

# Training env
device: cuda

# Memory management
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory

# Reduced precision
dtype: bf16

# Logging
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}/logs
log_every_n_steps: 1
log_peak_memory_stats: True

# Profiler (disabled)
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False

#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs

#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True

#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False

# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 3
active_steps: 2
num_cycles: 1
118 changes: 118 additions & 0 deletions recipes/configs/gemma3/12B_lora.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
# Config for multi-device LoRA finetuning in lora_finetune_distributed.py
# using a gemma3 12B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download google/gemma-3-12b-it --ignore-patterns "gemma-3-12b-it.gguf" --output-dir /tmp/gemma-3-12b-it --hf-token <HF_TOKEN>
#
# To launch on 4 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 4 lora_finetune_distributed --config gemma3/12B_lora
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nnodes 1 --nproc_per_node 4 lora_finetune_distributed --config gemma3/12B_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only when the model is being fine-tuned on 2+ GPUs.

output_dir: /tmp/torchtune/gemma3_12B/lora # /tmp may be deleted by your system. Change it to your preference.

# Tokenizer
tokenizer:
_component_: torchtune.models.gemma.gemma_tokenizer
path: /tmp/gemma-3-12b-it/tokenizer.model

# Dataset
dataset:
_component_: torchtune.datasets.alpaca_dataset
packed: False # True increases speed
seed: null
shuffle: True

# Model Arguments
model:
_component_: torchtune.models.gemma3.lora_gemma3_12b
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj']
apply_lora_to_mlp: True
lora_rank: 64 # higher increases accuracy and memory
lora_alpha: 128 # usually alpha=2*rank
lora_dropout: 0.0

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/gemma-3-12b-it/
checkpoint_files: [
model-00001-of-00002.safetensors,
model-00002-of-00005.safetensors,
model-00003-of-00005.safetensors,
model-00004-of-00005.safetensors,
model-00005-of-00005.safetensors,
]
recipe_checkpoint: null
output_dir: ${output_dir}
model_type: GEMMA3
resume_from_checkpoint: False

save_adapter_weights_only: False

optimizer:
_component_: torch.optim.AdamW
fused: True
lr: 2e-5

lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 10

loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss

# Fine-tuning arguments
batch_size: 4
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 1 # Use to increase effective batch size
clip_grad_norm: null
compile: False # torch.compile the model + loss, True increases speed + decreases memory

# Training env
device: cuda

# Memory management
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory

# Reduced precision
dtype: bf16

# Logging
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}/logs
log_every_n_steps: 1
log_peak_memory_stats: True

# Profiler (disabled)
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False

#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs

#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True

#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False

# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 3
active_steps: 2
num_cycles: 1
118 changes: 118 additions & 0 deletions recipes/configs/gemma3/12B_lora_single_device.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
# Config for multi-device LoRA finetuning in lora_finetune_single_device.py
# using a gemma3 12B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download google/gemma-3-12b-it --ignore-patterns "gemma-3-12b-it.gguf" --output-dir /tmp/gemma-3-12b-it --hf-token <HF_TOKEN>
#
# To launch on a single device, run the following command from root:
# tune run lora_finetune_single_device --config gemma3/12B_lora_single_device
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run lora_finetune_single_device --config gemma3/12B_lora_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only for training on single device.

output_dir: /tmp/torchtune/gemma3_12B/lora_single_device # /tmp may be deleted by your system. Change it to your preference.

# Tokenizer
tokenizer:
_component_: torchtune.models.gemma.gemma_tokenizer
path: /tmp/gemma-3-12b-it/tokenizer.model

# Dataset
dataset:
_component_: torchtune.datasets.alpaca_dataset
packed: False # True increases speed
seed: null
shuffle: True

# Model Arguments
model:
_component_: torchtune.models.gemma3.lora_gemma3_12b
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj']
apply_lora_to_mlp: True
lora_rank: 64 # higher increases accuracy and memory
lora_alpha: 128 # usually alpha=2*rank
lora_dropout: 0.0

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/gemma-3-12b-it/
checkpoint_files: [
model-00001-of-00002.safetensors,
model-00002-of-00005.safetensors,
model-00003-of-00005.safetensors,
model-00004-of-00005.safetensors,
model-00005-of-00005.safetensors,
]
recipe_checkpoint: null
output_dir: ${output_dir}
model_type: GEMMA3
resume_from_checkpoint: False
save_adapter_weights_only: False

optimizer:
_component_: torch.optim.AdamW
fused: True
lr: 2e-5

lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 10

loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss

# Fine-tuning arguments
batch_size: 8
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 8 # Use to increase effective batch size
clip_grad_norm: null
compile: False # torch.compile the model + loss, True increases speed + decreases memory

# Training env
device: cuda

# Memory management
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory

# Reduced precision
dtype: bf16

# Logging
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}/logs
log_every_n_steps: 1
log_peak_memory_stats: True

# Show case the usage of pytorch profiler
# Set enabled to False as it's only needed for debugging training
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False

#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs

#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True

#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False

# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 5
active_steps: 2
num_cycles: 1
Loading