Skip to content

[BugFix] Fix tanh normal mode #2198

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 14 commits into from
Jun 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions test/test_actors.py
Original file line number Diff line number Diff line change
Expand Up @@ -130,8 +130,8 @@ def test_probabilistic_actor_nested_normal(log_prob_key, nested_dim=5, n_actions
out_keys=[("data", "action")],
distribution_class=TanhNormal,
distribution_kwargs={
"min": action_spec.space.low,
"max": action_spec.space.high,
"low": action_spec.space.low,
"high": action_spec.space.high,
},
log_prob_key=log_prob_key,
return_log_prob=True,
Expand All @@ -153,8 +153,8 @@ def test_probabilistic_actor_nested_normal(log_prob_key, nested_dim=5, n_actions
out_keys=[("data", "action")],
distribution_class=TanhNormal,
distribution_kwargs={
"min": action_spec.space.low,
"max": action_spec.space.high,
"low": action_spec.space.low,
"high": action_spec.space.high,
},
log_prob_key=log_prob_key,
return_log_prob=True,
Expand Down
27 changes: 23 additions & 4 deletions test/test_cost.py
Original file line number Diff line number Diff line change
Expand Up @@ -13519,17 +13519,36 @@ def __init__(self):

def test_loss_exploration():
class DummyLoss(LossModule):
def forward(self, td):
assert exploration_type() == InteractionType.MODE
def forward(self, td, mode):
if mode is None:
mode = self.deterministic_sampling_mode
assert exploration_type() == mode
with set_exploration_type(ExplorationType.RANDOM):
assert exploration_type() == ExplorationType.RANDOM
assert exploration_type() == ExplorationType.MODE
assert exploration_type() == mode
return td

loss_fn = DummyLoss()
with set_exploration_type(ExplorationType.RANDOM):
assert exploration_type() == ExplorationType.RANDOM
loss_fn(None)
loss_fn(None, None)
assert exploration_type() == ExplorationType.RANDOM

with set_exploration_type(ExplorationType.RANDOM):
assert exploration_type() == ExplorationType.RANDOM
loss_fn(None, ExplorationType.DETERMINISTIC)
assert exploration_type() == ExplorationType.RANDOM

loss_fn.deterministic_sampling_mode = ExplorationType.MODE
with set_exploration_type(ExplorationType.RANDOM):
assert exploration_type() == ExplorationType.RANDOM
loss_fn(None, ExplorationType.MODE)
assert exploration_type() == ExplorationType.RANDOM

loss_fn.deterministic_sampling_mode = ExplorationType.MEAN
with set_exploration_type(ExplorationType.RANDOM):
assert exploration_type() == ExplorationType.RANDOM
loss_fn(None, ExplorationType.MEAN)
assert exploration_type() == ExplorationType.RANDOM


Expand Down
65 changes: 52 additions & 13 deletions test/test_distributions.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,10 +85,10 @@ def _map_all(*tensors_or_other, device):

class TestTanhNormal:
@pytest.mark.parametrize(
"min", [-torch.ones(3), -1, 3 * torch.tensor([-1.0, -2.0, -0.5]), -0.1]
"low", [-torch.ones(3), -1, 3 * torch.tensor([-1.0, -2.0, -0.5]), -0.1]
)
@pytest.mark.parametrize(
"max", [torch.ones(3), 1, 3 * torch.tensor([1.0, 2.0, 0.5]), 0.1]
"high", [torch.ones(3), 1, 3 * torch.tensor([1.0, 2.0, 0.5]), 0.1]
)
@pytest.mark.parametrize(
"vecs",
Expand All @@ -102,25 +102,64 @@ class TestTanhNormal:
)
@pytest.mark.parametrize("shape", [torch.Size([]), torch.Size([3, 4])])
@pytest.mark.parametrize("device", get_default_devices())
def test_tanhnormal(self, min, max, vecs, upscale, shape, device):
min, max, vecs, upscale, shape = _map_all(
min, max, vecs, upscale, shape, device=device
def test_tanhnormal(self, low, high, vecs, upscale, shape, device):
torch.manual_seed(0)
low, high, vecs, upscale, shape = _map_all(
low, high, vecs, upscale, shape, device=device
)
torch.manual_seed(0)
d = TanhNormal(
*vecs,
upscale=upscale,
min=min,
max=max,
low=low,
high=high,
)
for _ in range(100):
a = d.rsample(shape)
assert a.shape[: len(shape)] == shape
assert (a >= d.min).all()
assert (a <= d.max).all()
assert (a >= d.low).all()
assert (a <= d.high).all()
lp = d.log_prob(a)
assert torch.isfinite(lp).all()

def test_tanhnormal_mode(self):
# Checks that the std of the mode computed by tanh normal is within a certain range
# when starting from close points

torch.manual_seed(0)
# 10 start points with 1000 jitters around that
# std of the loc is about 1e-4
loc = torch.randn(10) + torch.randn(1000, 10) / 10000

t = TanhNormal(loc=loc, scale=0.5, low=-1, high=1, event_dims=0)

mode = t.get_mode()
assert mode.shape == loc.shape
empirical_mode, empirical_mode_lp = torch.zeros_like(loc), -float("inf")
for v in torch.arange(-1, 1, step=0.01):
lp = t.log_prob(v.expand_as(t.loc))
empirical_mode = torch.where(lp > empirical_mode_lp, v, empirical_mode)
empirical_mode_lp = torch.where(
lp > empirical_mode_lp, lp, empirical_mode_lp
)
assert abs(empirical_mode - mode).max() < 0.1, abs(empirical_mode - mode).max()
assert mode.shape == loc.shape
assert (mode.std(0).max() < 0.1).all(), mode.std(0)

@pytest.mark.parametrize("event_dims", [0, 1, 2])
def test_tanhnormal_event_dims(self, event_dims):
scale = 1
loc = torch.randn(1, 2, 3, 4)
t = TanhNormal(loc=loc, scale=scale, event_dims=event_dims)
sample = t.sample()
assert sample.shape == loc.shape
exp_shape = loc.shape[:-event_dims] if event_dims > 0 else loc.shape
assert t.log_prob(sample).shape == exp_shape, (
t.log_prob(sample).shape,
event_dims,
exp_shape,
)


class TestTruncatedNormal:
@pytest.mark.parametrize(
Expand Down Expand Up @@ -159,13 +198,13 @@ def test_truncnormal(self, min, max, vecs, upscale, shape, device):
a = d.rsample(shape)
assert a.device == device
assert a.shape[: len(shape)] == shape
assert (a >= d.min).all()
assert (a <= d.max).all()
assert (a >= d.low).all()
assert (a <= d.high).all()
lp = d.log_prob(a)
assert torch.isfinite(lp).all()
oob_min = d.min.expand((*d.batch_shape, *d.event_shape)) - 1e-2
oob_min = d.low.expand((*d.batch_shape, *d.event_shape)) - 1e-2
assert not torch.isfinite(d.log_prob(oob_min)).any()
oob_max = d.max.expand((*d.batch_shape, *d.event_shape)) + 1e-2
oob_max = d.high.expand((*d.batch_shape, *d.event_shape)) + 1e-2
assert not torch.isfinite(d.log_prob(oob_max)).any()

@pytest.mark.skipif(not _has_scipy, reason="scipy not installed")
Expand Down
2 changes: 1 addition & 1 deletion test/test_exploration.py
Original file line number Diff line number Diff line change
Expand Up @@ -585,7 +585,7 @@ def test_gsde(
wrapper = NormalParamWrapper(model)
module = SafeModule(wrapper, in_keys=in_keys, out_keys=["loc", "scale"])
distribution_class = TanhNormal
distribution_kwargs = {"min": -bound, "max": bound}
distribution_kwargs = {"low": -bound, "high": bound}
spec = BoundedTensorSpec(
-torch.ones(action_dim) * bound, torch.ones(action_dim) * bound, (action_dim,)
).to(device)
Expand Down
4 changes: 2 additions & 2 deletions test/test_tensordictmodules.py
Original file line number Diff line number Diff line change
Expand Up @@ -1416,8 +1416,8 @@ def test_dt_inference_wrapper(self, online):
)
dist_class = TanhDelta
dist_kwargs = {
"min": -1.0,
"max": 1.0,
"low": -1.0,
"high": 1.0,
}
actor = ProbabilisticActor(
in_keys=in_keys,
Expand Down
18 changes: 9 additions & 9 deletions torchrl/collectors/collectors.py
Original file line number Diff line number Diff line change
Expand Up @@ -335,9 +335,9 @@ class SyncDataCollector(DataCollectorBase):
information.
Defaults to ``False``.
exploration_type (ExplorationType, optional): interaction mode to be used when
collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.RANDOM``,
``torchrl.envs.utils.ExplorationType.MODE`` or ``torchrl.envs.utils.ExplorationType.MEAN``.
Defaults to ``torchrl.envs.utils.ExplorationType.RANDOM``.
collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.DETERMINISTIC``,
``torchrl.envs.utils.ExplorationType.RANDOM``, ``torchrl.envs.utils.ExplorationType.MODE``
or ``torchrl.envs.utils.ExplorationType.MEAN``.
return_same_td (bool, optional): if ``True``, the same TensorDict
will be returned at each iteration, with its values
updated. This feature should be used cautiously: if the same
Expand Down Expand Up @@ -1336,9 +1336,9 @@ class _MultiDataCollector(DataCollectorBase):
information.
Defaults to ``False``.
exploration_type (ExplorationType, optional): interaction mode to be used when
collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.RANDOM``,
``torchrl.envs.utils.ExplorationType.MODE`` or ``torchrl.envs.utils.ExplorationType.MEAN``.
Defaults to ``torchrl.envs.utils.ExplorationType.RANDOM``.
collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.DETERMINISTIC``,
``torchrl.envs.utils.ExplorationType.RANDOM``, ``torchrl.envs.utils.ExplorationType.MODE``
or ``torchrl.envs.utils.ExplorationType.MEAN``.
reset_when_done (bool, optional): if ``True`` (default), an environment
that return a ``True`` value in its ``"done"`` or ``"truncated"``
entry will be reset at the corresponding indices.
Expand Down Expand Up @@ -2635,9 +2635,9 @@ class aSyncDataCollector(MultiaSyncDataCollector):
information.
Defaults to ``False``.
exploration_type (ExplorationType, optional): interaction mode to be used when
collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.RANDOM``,
``torchrl.envs.utils.ExplorationType.MODE`` or ``torchrl.envs.utils.ExplorationType.MEAN``.
Defaults to ``torchrl.envs.utils.ExplorationType.RANDOM``.
collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.DETERMINISTIC``,
``torchrl.envs.utils.ExplorationType.RANDOM``, ``torchrl.envs.utils.ExplorationType.MODE``
or ``torchrl.envs.utils.ExplorationType.MEAN``.
reset_when_done (bool, optional): if ``True`` (default), an environment
that return a ``True`` value in its ``"done"`` or ``"truncated"``
entry will be reset at the corresponding indices.
Expand Down
6 changes: 3 additions & 3 deletions torchrl/collectors/distributed/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -346,9 +346,9 @@ class DistributedDataCollector(DataCollectorBase):
information.
Defaults to ``False``.
exploration_type (ExplorationType, optional): interaction mode to be used when
collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.RANDOM``,
``torchrl.envs.utils.ExplorationType.MODE`` or ``torchrl.envs.utils.ExplorationType.MEAN``.
Defaults to ``torchrl.envs.utils.ExplorationType.RANDOM``.
collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.DETERMINISTIC``,
``torchrl.envs.utils.ExplorationType.RANDOM``, ``torchrl.envs.utils.ExplorationType.MODE``
or ``torchrl.envs.utils.ExplorationType.MEAN``.
collector_class (type or str, optional): a collector class for the remote node. Can be
:class:`~torchrl.collectors.SyncDataCollector`,
:class:`~torchrl.collectors.MultiSyncDataCollector`,
Expand Down
6 changes: 3 additions & 3 deletions torchrl/collectors/distributed/ray.py
Original file line number Diff line number Diff line change
Expand Up @@ -211,9 +211,9 @@ class RayCollector(DataCollectorBase):
information.
Defaults to ``False``.
exploration_type (ExplorationType, optional): interaction mode to be used when
collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.RANDOM``,
``torchrl.envs.utils.ExplorationType.MODE`` or ``torchrl.envs.utils.ExplorationType.MEAN``.
Defaults to ``torchrl.envs.utils.ExplorationType.RANDOM``.
collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.DETERMINISTIC``,
``torchrl.envs.utils.ExplorationType.RANDOM``, ``torchrl.envs.utils.ExplorationType.MODE``
or ``torchrl.envs.utils.ExplorationType.MEAN``.
collector_class (Python class): a collector class to be remotely instantiated. Can be
:class:`~torchrl.collectors.SyncDataCollector`,
:class:`~torchrl.collectors.MultiSyncDataCollector`,
Expand Down
5 changes: 3 additions & 2 deletions torchrl/collectors/distributed/rpc.py
Original file line number Diff line number Diff line change
Expand Up @@ -187,8 +187,9 @@ class RPCDataCollector(DataCollectorBase):
information.
Defaults to ``False``.
exploration_type (ExplorationType, optional): interaction mode to be used when
collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.RANDOM``,
``torchrl.envs.utils.ExplorationType.MODE`` or ``torchrl.envs.utils.ExplorationType.MEAN``.
collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.DETERMINISTIC``,
``torchrl.envs.utils.ExplorationType.RANDOM``, ``torchrl.envs.utils.ExplorationType.MODE``
or ``torchrl.envs.utils.ExplorationType.MEAN``.
Defaults to ``torchrl.envs.utils.ExplorationType.RANDOM``.
collector_class (type or str, optional): a collector class for the remote node. Can be
:class:`~torchrl.collectors.SyncDataCollector`,
Expand Down
6 changes: 3 additions & 3 deletions torchrl/collectors/distributed/sync.py
Original file line number Diff line number Diff line change
Expand Up @@ -226,9 +226,9 @@ class DistributedSyncDataCollector(DataCollectorBase):
information.
Defaults to ``False``.
exploration_type (ExplorationType, optional): interaction mode to be used when
collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.RANDOM``,
``torchrl.envs.utils.ExplorationType.MODE`` or ``torchrl.envs.utils.ExplorationType.MEAN``.
Defaults to ``torchrl.envs.utils.ExplorationType.RANDOM``.
collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.DETERMINISTIC``,
``torchrl.envs.utils.ExplorationType.RANDOM``, ``torchrl.envs.utils.ExplorationType.MODE``
or ``torchrl.envs.utils.ExplorationType.MEAN``.
collector_class (type or str, optional): a collector class for the remote node. Can be
:class:`~torchrl.collectors.SyncDataCollector`,
:class:`~torchrl.collectors.MultiSyncDataCollector`,
Expand Down
Loading