Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions examples/siamese_network/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
# Siamese Network example on MNIST dataset

This example is ported over from [pytorch/examples/siamese_network](https://github.com/pytorch/examples/tree/main/siamese_network)

Usage:

```
pip install -r requirements.txt
python siamese_network.py
```
3 changes: 3 additions & 0 deletions examples/siamese_network/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
torch
torchvision
pytorch-ignite
311 changes: 311 additions & 0 deletions examples/siamese_network/siamese_network.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,311 @@
import argparse

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader, Dataset
from torchvision import datasets

from ignite.contrib.handlers import ProgressBar
from ignite.engine import Engine, Events
from ignite.handlers.param_scheduler import LRScheduler
from ignite.metrics import Accuracy, RunningAverage
from ignite.utils import manual_seed


class SiameseNetwork(nn.Module):
# update Siamese Network implementation in accordance with the dataset
"""
Siamese network for image similarity estimation.
The network is composed of two identical networks, one for each input.
The output of each network is concatenated and passed to a linear layer.
The output of the linear layer passed through a sigmoid function.
`"FaceNet" <https://arxiv.org/pdf/1503.03832.pdf>`_ is a variant of the Siamese network.
This implementation varies from FaceNet as we use the `ResNet-18` model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`
as our feature extractor.
In addition we use CIFAR10 dataset along with TripletMarginLoss
"""

def __init__(self):
super(SiameseNetwork, self).__init__()
# get resnet model
self.resnet = torchvision.models.resnet34(weights=None)
fc_in_features = self.resnet.fc.in_features

# changing the FC layer of resnet model to a linear layer
self.resnet.fc = nn.Identity()

# add linear layers to compare between the features of the two images
self.fc = nn.Sequential(
nn.Linear(fc_in_features, 256),
nn.ReLU(inplace=True),
nn.Linear(256, 10),
nn.ReLU(inplace=True),
)

# initialise relu activation
self.relu = nn.ReLU()

# initialize the weights
self.resnet.apply(self.init_weights)
self.fc.apply(self.init_weights)

def init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.01)

def forward_once(self, x):
output = self.resnet(x)
output = output.view(output.size()[0], -1)
return output

def forward(self, input1, input2, input3):

# pass the input through resnet
output1 = self.forward_once(input1)
output2 = self.forward_once(input2)
output3 = self.forward_once(input3)

# pass the output of resnet to sigmoid layer
output1 = self.fc(output1)
output2 = self.fc(output2)
output3 = self.fc(output3)

return output1, output2, output3


class MatcherDataset(Dataset):
# following class implements data downloading and handles preprocessing
def __init__(self, root, train, download=False):
super(MatcherDataset, self).__init__()

# get CIFAR10 dataset
self.dataset = datasets.CIFAR10(root, train=train, download=download)

# convert data from numpy array to Tensor
self.data = torch.from_numpy(self.dataset.data)

# shift the dimensions of dataset to match the initial input layer dimensions
self.data = torch.movedim(self.data, (0, 1, 2, 3), (0, 2, 3, 1))

# convert targets list to torch Tensor
self.dataset.targets = torch.tensor(self.dataset.targets)

self.group_examples()

def group_examples(self):
"""
To ease the accessibility of data based on the class, we will use `group_examples` to group
examples based on class. The data classes have already been mapped to numeric values and
so are the target outputs for each training input

Every key in `grouped_examples` corresponds to a class in CIFAR10 dataset. For every key in
`grouped_examples`, every value will conform to all of the indices for the CIFAR10
dataset examples that correspond to that key.
"""

# get the targets from CIFAR10 dataset
np_arr = np.array(self.dataset.targets)

# group examples based on class
self.grouped_examples = {}
for i in range(0, 10):
self.grouped_examples[i] = np.where((np_arr == i))[0]

def __len__(self):
return self.data.shape[0]

def __getitem__(self, index):
"""
For every sample in the batch we select 3 images. First one is the anchor image
which is the image obtained from the current index. We also obtain the label of
anchor image.

Now we select two random images, one belonging to the same class as that of the
anchor image (named as positive_image) and the other belonging to a different class
than that of the anchor image (named as negative_image). We return the anchor image,
positive image, negative image and anchor label.
"""

# obtain the anchor image
anchor_image = self.data[index].float()

# obtain the class label of the anchor image
anchor_label = self.dataset.targets[index]
anchor_label = int(anchor_label.item())

# find a label which is different from anchor_label
labels = list(range(0, 10))
labels.remove(anchor_label)
neg_index = torch.randint(0, 9, (1,)).item()
neg_label = labels[neg_index]

# get a random index from the range range of indices
random_index = torch.randint(0, len(self.grouped_examples[anchor_label]), (1,)).item()

# get the index of image in actual data using the anchor label and random index
positive_index = self.grouped_examples[anchor_label][random_index]

# choosing a random image using positive_index
positive_image = self.data[positive_index].float()

# get a random index from the range range of indices
random_index = torch.randint(0, len(self.grouped_examples[neg_label]), (1,)).item()

# get the index of image in actual data using the negative label and random index
negative_index = self.grouped_examples[neg_label][random_index]

# choosing a random image using negative_index
negative_image = self.data[negative_index].float()

return anchor_image, positive_image, negative_image, anchor_label


def pairwise_distance(input1, input2):
dist = input1 - input2
dist = torch.pow(dist, 2)
return dist


def calculate_loss(input1, input2):
output = pairwise_distance(input1, input2)
loss = torch.sum(output, 1)
loss = torch.sqrt(loss)
return loss


def run(args, model, device, optimizer, train_loader, test_loader, lr_scheduler):

# using Triplet Margin Loss
criterion = nn.TripletMarginLoss(p=2, margin=2.8)

# define model training step
def train_step(engine, batch):
model.train()
anchor_image, positive_image, negative_image, anchor_label = batch
anchor_image = anchor_image.to(device)
positive_image, negative_image = positive_image.to(device), negative_image.to(device)
anchor_label = anchor_label.to(device)
optimizer.zero_grad()
anchor_out, positive_out, negative_out = model(anchor_image, positive_image, negative_image)
loss = criterion(anchor_out, positive_out, negative_out)
loss.backward()
optimizer.step()
return loss

# define model testing step
def test_step(engine, batch):
model.eval()
with torch.no_grad():
anchor_image, _, _, anchor_label = batch
anchor_image = anchor_image.to(device)
anchor_label = anchor_label.to(device)
other_image = []
other_label = []
y_true = []
for i in range(anchor_image.shape[0]):
index = torch.randint(0, anchor_image.shape[0], (1,)).item()
img = anchor_image[index]
label = anchor_label[index]
other_image.append(img)
other_label.append(label)
if anchor_label[i] == other_label[i]:
y_true.append(1)
else:
y_true.append(0)
other = torch.stack(other_image)
other_label = torch.tensor(other_label)
other, other_label = other.to(device), other_label.to(device)
anchor_out, other_out, _ = model(anchor_image, other, other)
test_loss = calculate_loss(anchor_out, other_out)
y_pred = torch.where(test_loss < 3, 1, 0)
y_true = torch.tensor(y_true)
return [y_pred, y_true]

# create engines for trainer and evaluator
trainer = Engine(train_step)
evaluator = Engine(test_step)

# attach Running Average Loss metric to trainer and evaluator engines
RunningAverage(output_transform=lambda x: x).attach(trainer, "loss")
Accuracy(output_transform=lambda x: x).attach(evaluator, "accuracy")

# attach progress bar to trainer with loss
pbar1 = ProgressBar()
pbar1.attach(trainer, metric_names=["loss"])

# attach progress bar to evaluator
pbar2 = ProgressBar()
pbar2.attach(evaluator)

# attach LR Scheduler to trainer engine
trainer.add_event_handler(Events.ITERATION_STARTED, lr_scheduler)

# event handler triggers evauator at end of every epoch
@trainer.on(Events.EPOCH_COMPLETED(every=args.log_interval))
def test(engine):
state = evaluator.run(test_loader)
print(f'Test Accuracy: {state.metrics["accuracy"]}')

# run the trainer
trainer.run(train_loader, max_epochs=args.epochs)


def main():
# adds training defaults and support for terminal arguments
parser = argparse.ArgumentParser(description="PyTorch Siamese network Example")
parser.add_argument(
"--batch-size", type=int, default=256, metavar="N", help="input batch size for training (default: 64)"
)
parser.add_argument(
"--test-batch-size", type=int, default=256, metavar="N", help="input batch size for testing (default: 1000)"
)
parser.add_argument("--epochs", type=int, default=10, metavar="N", help="number of epochs to train (default: 14)")
parser.add_argument("--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)")
parser.add_argument(
"--gamma", type=float, default=0.95, metavar="M", help="Learning rate step gamma (default: 0.7)"
)
parser.add_argument("--no-cuda", action="store_true", default=False, help="disables CUDA training")
parser.add_argument("--no-mps", action="store_true", default=False, help="disables macOS GPU training")
parser.add_argument("--dry-run", action="store_true", default=False, help="quickly check a single pass")
parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
parser.add_argument(
"--log-interval",
type=int,
default=1,
metavar="N",
help="how many batches to wait before logging training status",
)
parser.add_argument("--save-model", action="store_true", default=False, help="For Saving the current Model")
parser.add_argument("--num-workers", default=4, help="number of processes generating parallel batches")
args = parser.parse_args()

# set manual seed
manual_seed(args.seed)

# set device
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

# data loading
train_dataset = MatcherDataset("../data", train=True, download=True)
test_dataset = MatcherDataset("../data", train=False)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_workers)
test_loader = DataLoader(test_dataset, batch_size=args.test_batch_size, num_workers=args.num_workers)

# set model parameters
model = SiameseNetwork().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=15, gamma=args.gamma)
lr_scheduler = LRScheduler(scheduler)

# call run function
run(args, model, device, optimizer, train_loader, test_loader, lr_scheduler)


if __name__ == "__main__":
main()