Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
95 changes: 47 additions & 48 deletions tests/ignite/metrics/test_fbeta.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,59 +34,58 @@ def test_wrong_inputs():
Fbeta(1.0, recall=r, output_transform=lambda x: x)


def test_integration():
def _test(p, r, average, output_transform):
np.random.seed(1)

n_iters = 10
batch_size = 10
n_classes = 10

y_true = np.arange(0, n_iters * batch_size, dtype="int64") % n_classes
y_pred = 0.2 * np.random.rand(n_iters * batch_size, n_classes)
for i in range(n_iters * batch_size):
if np.random.rand() > 0.4:
y_pred[i, y_true[i]] = 1.0
else:
j = np.random.randint(0, n_classes)
y_pred[i, j] = 0.7

y_true_batch_values = iter(y_true.reshape(n_iters, batch_size))
y_pred_batch_values = iter(y_pred.reshape(n_iters, batch_size, n_classes))

def update_fn(engine, batch):
y_true_batch = next(y_true_batch_values)
y_pred_batch = next(y_pred_batch_values)
if output_transform is not None:
return {"y_pred": torch.from_numpy(y_pred_batch), "y": torch.from_numpy(y_true_batch)}
return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch)

evaluator = Engine(update_fn)

f2 = Fbeta(beta=2.0, average=average, precision=p, recall=r, output_transform=output_transform)
f2.attach(evaluator, "f2")
def _output_transform(output):
return output["y_pred"], output["y"]


@pytest.mark.parametrize(
"p, r, average, output_transform",
[
(None, None, False, None),
(None, None, True, None),
(None, None, False, _output_transform),
(None, None, True, _output_transform),
(Precision(average=False), Recall(average=False), False, None),
(Precision(average=False), Recall(average=False), True, None),
],
)
def test_integration(p, r, average, output_transform):

np.random.seed(1)

n_iters = 10
batch_size = 10
n_classes = 10

y_true = np.arange(0, n_iters * batch_size, dtype="int64") % n_classes
y_pred = 0.2 * np.random.rand(n_iters * batch_size, n_classes)
for i in range(n_iters * batch_size):
if np.random.rand() > 0.4:
y_pred[i, y_true[i]] = 1.0
else:
j = np.random.randint(0, n_classes)
y_pred[i, j] = 0.7

data = list(range(n_iters))
state = evaluator.run(data, max_epochs=1)
y_true_batch_values = iter(y_true.reshape(n_iters, batch_size))
y_pred_batch_values = iter(y_pred.reshape(n_iters, batch_size, n_classes))

f2_true = fbeta_score(y_true, np.argmax(y_pred, axis=-1), average="macro" if average else None, beta=2.0)
if isinstance(state.metrics["f2"], torch.Tensor):
np.testing.assert_allclose(f2_true, state.metrics["f2"].numpy())
else:
assert f2_true == pytest.approx(state.metrics["f2"]), f"{f2_true} vs {state.metrics['f2']}"
def update_fn(engine, batch):
y_true_batch = next(y_true_batch_values)
y_pred_batch = next(y_pred_batch_values)
if output_transform is not None:
return {"y_pred": torch.from_numpy(y_pred_batch), "y": torch.from_numpy(y_true_batch)}
return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch)

evaluator = Engine(update_fn)

_test(None, None, False, output_transform=None)
_test(None, None, True, output_transform=None)
f2 = Fbeta(beta=2.0, average=average, precision=p, recall=r, output_transform=output_transform)
f2.attach(evaluator, "f2")

def output_transform(output):
return output["y_pred"], output["y"]
data = list(range(n_iters))
state = evaluator.run(data, max_epochs=1)

_test(None, None, False, output_transform=output_transform)
_test(None, None, True, output_transform=output_transform)
precision = Precision(average=False)
recall = Recall(average=False)
_test(precision, recall, False, None)
_test(precision, recall, True, None)
f2_true = fbeta_score(y_true, np.argmax(y_pred, axis=-1), average="macro" if average else None, beta=2.0)
np.testing.assert_allclose(np.array(f2_true), np.array(state.metrics["f2"]))


def _test_distrib_integration(device):
Expand Down