Skip to content
Merged
Show file tree
Hide file tree
Changes from 15 commits
Commits
Show all changes
33 commits
Select commit Hold shift + click to select a range
27a79c4
[Executorch] Refactor op_mul's broadcasting utils
kimishpatel Feb 5, 2025
dbe3e8a
[ExecuTorch] Add broadcast support for optimized add op
kimishpatel Feb 5, 2025
bf761db
Update on "[ExecuTorch] Add broadcast support for optimized add op"
kimishpatel Feb 6, 2025
fb13cd0
[Executorch] Refactor op_add to support op_sub broadcasting
kimishpatel Feb 6, 2025
7d14848
[Executorch] Add broadcasting support to optimized op_sub
kimishpatel Feb 6, 2025
557ea5d
Update base for Update on "[Executorch] Add broadcasting support to o…
kimishpatel Feb 6, 2025
eb13ce3
Update on "[Executorch] Add broadcasting support to optimized op_sub"
kimishpatel Feb 6, 2025
2320d71
Update base for Update on "[Executorch] Add broadcasting support to o…
kimishpatel Feb 7, 2025
773f193
Update on "[Executorch] Add broadcasting support to optimized op_sub"
kimishpatel Feb 7, 2025
096f070
Update base for Update on "[Executorch] Add broadcasting support to o…
kimishpatel Feb 7, 2025
32a010f
Update on "[Executorch] Add broadcasting support to optimized op_sub"
kimishpatel Feb 7, 2025
80e39bb
Update base for Update on "[Executorch] Add broadcasting support to o…
kimishpatel Feb 11, 2025
3666bd0
Update on "[Executorch] Add broadcasting support to optimized op_sub"
kimishpatel Feb 11, 2025
012fe19
Update base for Update on "[Executorch] Add broadcasting support to o…
kimishpatel Feb 11, 2025
ca3ca60
Update on "[Executorch] Add broadcasting support to optimized op_sub"
kimishpatel Feb 11, 2025
8e0e9fd
Update base for Update on "[Executorch] Add broadcasting support to o…
kimishpatel Feb 12, 2025
5e446df
Update on "[Executorch] Add broadcasting support to optimized op_sub"
kimishpatel Feb 12, 2025
a5ff39e
Update base for Update on "[Executorch] Add broadcasting support to o…
kimishpatel Feb 12, 2025
8f1a3e6
Update on "[Executorch] Add broadcasting support to optimized op_sub"
kimishpatel Feb 12, 2025
ba6d2bc
Update base for Update on "[Executorch] Add broadcasting support to o…
kimishpatel Feb 12, 2025
af3a382
Update on "[Executorch] Add broadcasting support to optimized op_sub"
kimishpatel Feb 12, 2025
adceb7b
Update base for Update on "[Executorch] Add broadcasting support to o…
kimishpatel Feb 13, 2025
b20c2a0
Update on "[Executorch] Add broadcasting support to optimized op_sub"
kimishpatel Feb 13, 2025
15aa3f2
Update base for Update on "[Executorch] Add broadcasting support to o…
kimishpatel Feb 13, 2025
4d1cb83
Update on "[Executorch] Add broadcasting support to optimized op_sub"
kimishpatel Feb 13, 2025
677fb72
Update base for Update on "[Executorch] Add broadcasting support to o…
kimishpatel Feb 15, 2025
6a9917c
Update on "[Executorch] Add broadcasting support to optimized op_sub"
kimishpatel Feb 15, 2025
67d5e26
Update base for Update on "[Executorch] Add broadcasting support to o…
kimishpatel Feb 15, 2025
0fecd91
Update on "[Executorch] Add broadcasting support to optimized op_sub"
kimishpatel Feb 15, 2025
0ee9319
Update base for Update on "[Executorch] Add broadcasting support to o…
kimishpatel Feb 18, 2025
e702317
Update on "[Executorch] Add broadcasting support to optimized op_sub"
kimishpatel Feb 18, 2025
5dc6033
Update base for Update on "[Executorch] Add broadcasting support to o…
kimishpatel Feb 21, 2025
6976e4c
Update on "[Executorch] Add broadcasting support to optimized op_sub"
kimishpatel Feb 21, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
110 changes: 110 additions & 0 deletions kernels/optimized/cpu/binary_ops.h
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@

#pragma once

#include <executorch/kernels/optimized/vec/functional.h>
#include <executorch/kernels/portable/cpu/scalar_utils.h>
#include <executorch/runtime/kernel/kernel_includes.h>

namespace torch {
Expand Down Expand Up @@ -190,5 +192,113 @@ std::array<int32_t, 3> inline get_normalized_tensor_size(
return normalized_tensor_size;
}

template <typename CTYPE, typename Op>
Tensor& handle_last_dim_broadcast_elementwise(
KernelRuntimeContext& ctx,
const Op& vec_fun,
const Tensor& a,
const Tensor& b,
Tensor& out,
const ElementwiseOptimizedPath selected_optimized_path,
const executorch::aten::optional<Scalar>& alpha = {}) {
ScalarType out_type = out.scalar_type();
const Tensor* lhs;
const Tensor* rhs;
if (selected_optimized_path ==
ElementwiseOptimizedPath::kBroadcastLastDimReverseArguments) {
lhs = &b;
rhs = &a;
} else {
lhs = &a;
rhs = &b;
}
auto error = resize_tensor(out, lhs->sizes());
ET_KERNEL_CHECK_MSG(
ctx,
error == Error::Ok,
InvalidArgument,
out,
"Failed to resize output tensor.");
const size_t outer_size = getLeadingDims(out, out.dim() - 1);
const auto broadcast_size = out.size(out.dim() - 1);
executorch::vec::broadcasting_map_broadcast_last_dim<CTYPE, Op>(
vec_fun,
out.mutable_data_ptr<CTYPE>(),
lhs->const_data_ptr<CTYPE>(),
rhs->const_data_ptr<CTYPE>(),
outer_size,
broadcast_size);
return out;
}

template <typename CTYPE, typename Op>
Tensor& handle_broadcast_elementwise(
KernelRuntimeContext& ctx,
const Op& vec_fun,
const Tensor& a,
const Tensor& b,
Tensor& out,
const ElementwiseOptimizedPath selected_optimized_path,
const executorch::aten::optional<Scalar>& alpha = {}) {
if ((selected_optimized_path ==
ElementwiseOptimizedPath::kBroadcastLastDim) ||
(selected_optimized_path ==
ElementwiseOptimizedPath::kBroadcastLastDimReverseArguments)) {
return handle_last_dim_broadcast_elementwise<CTYPE>(
ctx, vec_fun, a, b, out, selected_optimized_path);
}

const Tensor* lhs;
const Tensor* rhs;
if ((selected_optimized_path ==
ElementwiseOptimizedPath::kBroadcast2dBy1dReverseArguments) ||
(selected_optimized_path ==
ElementwiseOptimizedPath::kBroadcastNdByNdReverseArguments)) {
lhs = &b;
rhs = &a;
} else {
// Catch failure to update logic when adding new broadcasting possibility.
ET_DCHECK(
(selected_optimized_path ==
ElementwiseOptimizedPath::kBroadcast2dBy1d) ||
(selected_optimized_path ==
ElementwiseOptimizedPath::kBroadcastNdByNd));
lhs = &a;
rhs = &b;
}
auto error = resize_tensor(out, lhs->sizes());
ET_KERNEL_CHECK_MSG(
ctx,
error == Error::Ok,
InvalidArgument,
out,
"Failed to resize output tensor.");
int64_t outer_size = 1;
int64_t broadcast_size;
int64_t inner_size;
if ((selected_optimized_path == ElementwiseOptimizedPath::kBroadcastNdByNd) ||
(selected_optimized_path ==
ElementwiseOptimizedPath::kBroadcastNdByNdReverseArguments)) {
int32_t broadcast_dim = internal::get_broadcast_dim(*lhs, *rhs);
int32_t broadcast_dim_lhs = lhs->dim() + broadcast_dim;
auto normalized_tensor_size_lhs =
get_normalized_tensor_size(*lhs, broadcast_dim_lhs);
outer_size = normalized_tensor_size_lhs[0];
broadcast_size = normalized_tensor_size_lhs[1];
inner_size = normalized_tensor_size_lhs[2];
} else {
broadcast_size = lhs->sizes()[lhs->dim() - 2];
inner_size = lhs->sizes()[lhs->dim() - 1];
}
executorch::vec::broadcasting_map_3d_and_unsqueezed_3d<CTYPE, Op>(
vec_fun,
out.mutable_data_ptr<CTYPE>(),
lhs->const_data_ptr<CTYPE>(),
rhs->const_data_ptr<CTYPE>(),
outer_size,
broadcast_size,
inner_size);
return out;
}
} // namespace executor
} // namespace torch
154 changes: 8 additions & 146 deletions kernels/optimized/cpu/op_add.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -14,59 +14,11 @@
#include <executorch/runtime/kernel/kernel_includes.h>
#include <executorch/runtime/platform/assert.h>

#include <executorch/kernels/optimized/cpu/op_add_sub_impl.h>

namespace torch {
namespace executor {
namespace native {
namespace {

template <
bool can_cast,
typename CTYPE_A,
typename CTYPE_B,
typename CTYPE_IN,
typename CTYPE_OUT>
struct AddInner;

template <
typename CTYPE_A,
typename CTYPE_B,
typename CTYPE_IN,
typename CTYPE_OUT>
struct AddInner<true, CTYPE_A, CTYPE_B, CTYPE_IN, CTYPE_OUT> {
static void
run(const Tensor& a, const Tensor& b, CTYPE_IN alpha_val, Tensor& out) {
apply_binary_elementwise_fn<CTYPE_A, CTYPE_B, CTYPE_OUT>(
// NOLINTNEXTLINE(facebook-hte-ConstantArgumentPassByValue)
[alpha_val](const CTYPE_A val_a, const CTYPE_B val_b) {
CTYPE_IN a_casted = static_cast<CTYPE_IN>(val_a);
CTYPE_IN b_casted = static_cast<CTYPE_IN>(val_b);
CTYPE_IN value = a_casted + alpha_val * b_casted;

return static_cast<CTYPE_OUT>(value);
},
a,
b,
out);
}
};

template <typename CTYPE_IN>
struct ReportCanCastBug {
static void run(const Tensor&, const Tensor&, CTYPE_IN, Tensor&) {
ET_DCHECK_MSG(false, "BUG: canCast should have been checked above");
}
};

template <
typename CTYPE_A,
typename CTYPE_B,
typename CTYPE_IN,
typename CTYPE_OUT>
struct AddInner<false, CTYPE_A, CTYPE_B, CTYPE_IN, CTYPE_OUT>
: public ReportCanCastBug<CTYPE_IN> {};

} // namespace

using Tensor = executorch::aten::Tensor;
using ScalarType = executorch::aten::ScalarType;

Expand All @@ -76,8 +28,6 @@ Tensor& opt_add_out(
const Tensor& b,
const Scalar& alpha,
Tensor& out) {
(void)ctx;

ScalarType a_type = a.scalar_type();
ScalarType b_type = b.scalar_type();
ScalarType out_type = out.scalar_type();
Expand All @@ -95,7 +45,9 @@ Tensor& opt_add_out(
ET_SWITCH_REALB_TYPES(b_type, ctx, "add.out", CTYPE_B, [&]() {
CTYPE alpha_val;
ET_KERNEL_CHECK(
ctx, utils::extract_scalar(alpha, &alpha_val), InvalidArgument, );
ctx,
torch::executor::native::utils::extract_scalar(alpha, &alpha_val),
InvalidArgument, );
CTYPE_B b_val = *b.const_data_ptr<CTYPE_B>();
CTYPE b_casted = static_cast<CTYPE>(b_val);

Expand All @@ -115,99 +67,9 @@ Tensor& opt_add_out(
return opt_add_out(ctx, b, a, alpha, out);
}

auto selected_optimized_path = select_optimized_path(a, b, out);
if (selected_optimized_path == ElementwiseOptimizedPath::kTreatAs1d) {
// Resize for dynamic shape
auto error = resize_tensor(out, a.sizes());
ET_KERNEL_CHECK_MSG(
ctx,
error == Error::Ok,
InvalidArgument,
out,
"Failed to resize output tensor.");

ET_SWITCH_REALB_TYPES(a_type, ctx, "add.out", CTYPE, [&]() {
CTYPE alpha_val;
ET_KERNEL_CHECK(
ctx, utils::extract_scalar(alpha, &alpha_val), InvalidArgument, );

using Vec = executorch::vec::Vectorized<CTYPE>;
executorch::vec::map2<CTYPE>(
[alpha_val](Vec x, Vec y) { return x + Vec(alpha_val) * y; },
out.mutable_data_ptr<CTYPE>(),
a.const_data_ptr<CTYPE>(),
b.const_data_ptr<CTYPE>(),
out.numel());
});
} else if (selected_optimized_path != ElementwiseOptimizedPath::kNone) {
const Tensor* lhs;
const Tensor* rhs;
if (selected_optimized_path ==
ElementwiseOptimizedPath::kBroadcast2dBy1dReverseArguments) {
lhs = &b;
rhs = &a;
} else {
// Catch failure to update logic when adding new broadcasting possibility.
ET_DCHECK(
selected_optimized_path ==
ElementwiseOptimizedPath::kBroadcast2dBy1d);
lhs = &a;
rhs = &b;
}
auto error = resize_tensor(out, lhs->sizes());
ET_KERNEL_CHECK_MSG(
ctx,
error == Error::Ok,
InvalidArgument,
out,
"Failed to resize output tensor.");
ET_SWITCH_REALB_TYPES(out_type, ctx, "add.out", CTYPE, [&]() {
CTYPE alpha_val;
ET_KERNEL_CHECK(
ctx, utils::extract_scalar(alpha, &alpha_val), InvalidArgument, );

using Vec = executorch::vec::Vectorized<CTYPE>;
executorch::vec::broadcasting_map_2d_by_1d<CTYPE>(
[alpha_val](Vec x, Vec y) { return x + Vec(alpha_val) * y; },
out.mutable_data_ptr<CTYPE>(),
lhs->const_data_ptr<CTYPE>(),
rhs->const_data_ptr<CTYPE>(),
lhs->sizes()[lhs->dim() - 2],
lhs->sizes()[lhs->dim() - 1]);
});
} else {
ScalarType common_type =
promoteTypes(a_type, b_type, /*half_to_float*/ true);
ET_KERNEL_CHECK(ctx, canCast(common_type, out_type), InvalidArgument, out);

ET_KERNEL_CHECK(
ctx,
resize_to_broadcast_target_size(a, b, out) == Error::Ok,
InvalidArgument,
out);

ET_SWITCH_REALHBBF16_TYPES(a_type, ctx, "add.out", CTYPE_A, [&]() {
ET_SWITCH_REALHBBF16_TYPES(b_type, ctx, "add.out", CTYPE_B, [&]() {
using CTYPE_IN = typename torch::executor::
promote_types<CTYPE_A, CTYPE_B, /*half_to_float*/ true>::type;
ET_DCHECK(CppTypeToScalarType<CTYPE_IN>::value == common_type);
ET_SWITCH_REALHBBF16_TYPES(out_type, ctx, "add.out", CTYPE_OUT, [&]() {
CTYPE_IN alpha_val;
ET_KERNEL_CHECK(
ctx, utils::extract_scalar(alpha, &alpha_val), InvalidArgument, );

AddInner<
can_cast<CTYPE_IN, CTYPE_OUT>::value,
CTYPE_A,
CTYPE_B,
CTYPE_IN,
CTYPE_OUT>::run(a, b, alpha_val, out);
});
});
});
}

return out;
static constexpr const char op_name[] = "add.out";
return torch::executor::kernels::impl::opt_add_sub_out_impl<false, op_name>(
ctx, a, b, alpha, out);
}

Tensor& opt_add_scalar_out(
Expand Down
Loading
Loading