Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view

This file was deleted.

7 changes: 0 additions & 7 deletions backends/nxp/backend/ir/tflite_optimizer/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,9 +54,6 @@
from executorch.backends.nxp.backend.ir.tflite_optimizer.optimizations.remove_unused_tensors_and_buffers import (
RemoveUnusedTensorsAndBuffers,
)
from executorch.backends.nxp.backend.ir.tflite_optimizer.optimizations.replace_average_pool_before_fully_connected_with_sum import (
ReplaceAveragePoolBeforeFullyConnectedWithSum,
)


class Optimization(Enum):
Expand All @@ -83,7 +80,6 @@ class Optimization(Enum):

MOVE_ACTIVATION_BEFORE_CONCAT = 15
COMBINE_HARD_SIGMOID_AND_MUL_INTO_HARD_SWISH = 16
REPLACE_AVERAGE_POOL_BEFORE_FULLY_CONNECTED_WITH_SUM = 17


class Optimizer:
Expand Down Expand Up @@ -164,9 +160,6 @@ def __init__(
Optimization.COMBINE_HARD_SIGMOID_AND_MUL_INTO_HARD_SWISH: CombineHardSigmoidAndMulIntoHardSwish(
builder, conversion_config
),
Optimization.REPLACE_AVERAGE_POOL_BEFORE_FULLY_CONNECTED_WITH_SUM: ReplaceAveragePoolBeforeFullyConnectedWithSum(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

How is this related to the view support?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Same here, not related to aten.view. Our fault.
It is indeed a separate commit, and the PR descrition should have included the proper description:
"Fix avegage pooling, which in case of kernel (1,1) turns into Sum in Neutron IR"

At least added in to the PR description.

builder, conversion_config
),
}

def optimize(
Expand Down
2 changes: 2 additions & 0 deletions backends/nxp/quantizer/neutron_quantizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
ReluPattern,
ReshapePattern,
SoftMaxPattern,
ViewPattern,
)
from executorch.backends.nxp.quantizer.utils import (
find_sequential_partitions_aten,
Expand Down Expand Up @@ -200,6 +201,7 @@ def __init__(self):
NeutronAtenQuantizer(ReluPattern(), static_qconfig),
NeutronAtenQuantizer(ReluInPlacePattern(), static_qconfig),
NeutronAtenQuantizer(AvgPoolPattern(), static_qconfig),
NeutronAtenQuantizer(ViewPattern(), static_qconfig),
]
)

Expand Down
9 changes: 9 additions & 0 deletions backends/nxp/quantizer/patterns.py
Original file line number Diff line number Diff line change
Expand Up @@ -307,6 +307,15 @@ def partition_types(self):
return [torch.ops.aten.reshape.default]


class ViewPattern(SharedSpecPattern):
"""
Quantizer for View operator.
"""

def partition_types(self):
return [torch.ops.aten.view.default]


class SoftMaxPattern(QuantizationPattern):
"""
Quantizer for Softmax operator.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -7,13 +7,7 @@
import pytest
import torch

from executorch.backends.nxp.backend.edge_program_converter import (
EdgeProgramToIRConverter,
)
from executorch.backends.nxp.tests.executorch_pipeline import (
to_edge_program,
to_quantized_edge_program,
)
from executorch.backends.nxp.tests.executorch_pipeline import to_edge_program
from executorch.backends.nxp.tests.executors import (
convert_run_compare,
ToNCHWPreprocess,
Expand All @@ -22,9 +16,7 @@
from executorch.backends.nxp.tests.models import (
ConstantPadNDConvModule,
ConstantPadNDModule,
Conv2dConstantPadNDModule,
)
from torch.export import ExportedProgram


@pytest.fixture(autouse=True)
Expand All @@ -47,37 +39,6 @@ def test_constant_pad_nd_conversion__specific_constant(constant):
convert_run_compare(edge_program, input_data)


@pytest.mark.parametrize("constant", [0.0, 67.28, 42.0, -13.37])
@pytest.mark.skip(reason="Neutron Converter does not fully convert for NPU")
def test_constant_pad_nd_quant_conversion__specific_constant(mocker, constant):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Unrelated change?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You are right, this should have been a separate PR to remove irrelevant test. We will pay more attention when rebasing from our development tree.

input_shape = (2, 4, 12, 12)
paddings = (2, 2, 2, 2)

converter_spy = mocker.spy(EdgeProgramToIRConverter, "convert_program")

# Run conversion
_ = to_quantized_edge_program(
Conv2dConstantPadNDModule(paddings, constant), input_shape
)

# Capture generated model
tflite_flatbuffers_model, io_formats = converter_spy.spy_return

# Capture converted program
edge_program: ExportedProgram = converter_spy.call_args.args[1]

input_data = (np.random.random(input_shape).astype(np.float32) * 50).astype(np.int8)

convert_run_compare(
edge_program,
input_data,
tfl_model=tflite_flatbuffers_model,
atol=1.0,
tflite_input_preprocess=ToNHWCPreprocess(),
tflite_output_preprocess=ToNCHWPreprocess(),
)


def test_constant_pad_nd_conversion__default_constant():
input_shape = [2, 4, 6, 8]
paddings = [1, 2, 3, 4]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,24 @@ def forward(self, x):
return x


class ConvLinearViewModule(torch.nn.Module):
def __init__(self, channels: int, channels_view_out: int):
super().__init__()
self.conv = nn.Conv2d(channels, channels, 3, 2)
self.linear = nn.Linear(channels_view_out, 32, bias=True)
self.channels_view_out = channels_view_out
self.avg_pool = nn.AvgPool2d(1)
self.relu = nn.ReLU()

def forward(self, x):
x = self.conv(x)
x = self.relu(x)
x = self.avg_pool(x)
x = x.view(-1, self.channels_view_out)
x = self.linear(x)
return x


def test__channels_first_to_2d(mocker):
input_shape = [2, 4, 7, 9]
new_shape = [12, 32] # Mix up the dimensions for a thorough test.
Expand Down Expand Up @@ -205,19 +223,20 @@ def test_view_copy_w_linear_quant_conversion(mocker, input_shape, new_shape):


@pytest.mark.parametrize(
"input_shape, new_shape",
"input_shape, channels_view_out",
[
pytest.param((1, 4, 16, 16), (50, 18), id="4D, batch_size=1"),
pytest.param((10, 4, 16, 16), (500, 18), id="4D, , batch_size=10"),
pytest.param((1, 4, 16, 16), 196, id="4D"),
],
)
@pytest.mark.skip(reason="Neutron Converter does not fully convert for NPU")
def test_view_copy_w_conv_quant_conversion(mocker, input_shape, new_shape):
def test_view_w_conv_linear_quant_conversion(mocker, input_shape, channels_view_out):
converter_spy = mocker.spy(EdgeProgramToIRConverter, "convert_program")

# Run conversion
_ = to_quantized_edge_program(
ConvReshapeModule(channels=input_shape[1], new_shape=new_shape), input_shape
ConvLinearViewModule(
channels=input_shape[1], channels_view_out=channels_view_out
),
input_shape,
)

# Capture generated model
Expand Down
Loading