Open
Description
🐛 Describe the bug
Get #5710 and run
python executorch.examples.apple.coreml.scripts.export -m resnet18 --quantize
The FP32 model runs fully resident on ANE at 0.9ms on average and 11.13ms cold-start (first inference).
The int8 quantized model runs also fully resident on ANE at 0.54ms on average and 3.10 ms cold-start. Also looking at the layers, looks like there is a lot of quantize followed immediately by dequantize.
Versions
Is debug build: False
CUDA used to build PyTorch: None
ROCM used to build PyTorch: N/A
OS: macOS 15.0 (arm64)
GCC version: Could not collect
Clang version: 16.0.0 (clang-1600.0.26.3)
CMake version: version 3.29.2
Libc version: N/A
Python version: 3.11.5 (main, Sep 11 2023, 08:31:25) [Clang 14.0.6 ] (64-bit runtime)
Python platform: macOS-15.0-arm64-arm-64bit
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Apple M1 Pro
Versions of relevant libraries:
[pip3] executorch==0.4.0a0+7047162
[pip3] flake8==6.0.0
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] numpydoc==1.5.0
[pip3] torch==2.5.0.dev20240618
[pip3] torchaudio==2.4.0.dev20240618
[pip3] torchsr==1.0.4
[pip3] torchvision==0.20.0.dev20240618
[conda] executorch 0.4.0a0+7047162 pypi_0 pypi
[conda] numpy 1.26.4 pypi_0 pypi
[conda] numpydoc 1.5.0 py311hca03da5_0
[conda] torch 2.4.0a0+gitae81855 dev_0 <develop>
[conda] torchaudio 2.4.0.dev20240618 pypi_0 pypi
[conda] torchsr 1.0.4 pypi_0 pypi
[conda] torchvision 0.20.0.dev20240618 pypi_0 pypi