Skip to content

[WIP] Add DSP ops #2808

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 3 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
111 changes: 111 additions & 0 deletions examples/tutorials/fm_synthesis_tutorial.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
"""
FM Synthesis
============

**Author**: `Moto Hira <moto@meta.com>`__

.. warning::
This tutorial requires prototype DSP features, which are
available in nightly builds.

Please refer to https://pytorch.org/get-started/locally
for instructions for installing a nightly build.

"""

import torch
import torchaudio

print(torch.__version__)
print(torchaudio.__version__)

######################################################################
#
from torchaudio.prototype.functional import oscillator_bank

import matplotlib.pyplot as plt
from IPython.display import Audio

######################################################################
#

SAMPLE_RATE = 16000
duration = 1.2
NUM_FRAMES = int(SAMPLE_RATE * duration)

F0 = 220.
F1 = 440.


def fm_synth(beta, f1=F1, f0=F0):
print(f"Modulator Frequency: {f1} [Hz]")
print(f"Carrior Frequency: {f0} [Hz]")
print(f"Beta: {beta}")

amp = torch.ones((NUM_FRAMES, 1), dtype=torch.float64)

freq = torch.full((NUM_FRAMES, 1), f1, dtype=torch.float64)
mod = oscillator_bank(freq, amp, sample_rate=SAMPLE_RATE, reduction="none")

freq = f0 + beta * f0 * mod
car = oscillator_bank(freq, amp, sample_rate=SAMPLE_RATE)
return mod.sum(-1), car


######################################################################
#
def plot(mod, car, sample_rate=SAMPLE_RATE):
fig, axes = plt.subplots(4, 1)
axes[0].specgram(mod, Fs=sample_rate)
spectrum, freqs, _, _ = axes[1].specgram(car, Fs=sample_rate)

num_samples = int(SAMPLE_RATE * 0.01)
t = torch.linspace(0, num_samples / sample_rate, num_samples)
axes[2].plot(t, car[..., :num_samples])

half = freqs.shape[0] // 2
axes[3].plot(freqs[:half], spectrum[:half, spectrum.shape[1]//2], marker='+')


######################################################################
#
mod, car = fm_synth(beta=0.1)
plot(mod, car)
Audio(car, rate=SAMPLE_RATE)
######################################################################
#
mod, car = fm_synth(beta=1)
plot(mod, car)
Audio(car, rate=SAMPLE_RATE)
######################################################################
#
mod, car = fm_synth(beta=10)
plot(mod, car)
Audio(car, rate=SAMPLE_RATE)


######################################################################
#
mod, car = fm_synth(beta=1, f1=0.01*F0)
plot(mod, car)
Audio(car, rate=SAMPLE_RATE)
######################################################################
#
mod, car = fm_synth(beta=1, f1=0.1*F0)
plot(mod, car)
Audio(car, rate=SAMPLE_RATE)
######################################################################
#
mod, car = fm_synth(beta=10, f1=0.1*F0)
plot(mod, car)
Audio(car, rate=SAMPLE_RATE)
######################################################################
#
mod, car = fm_synth(beta=1, f1=1*F0)
plot(mod, car)
Audio(car, rate=SAMPLE_RATE)
######################################################################
#
mod, car = fm_synth(beta=1, f1=10*F0)
plot(mod, car)
Audio(car, rate=SAMPLE_RATE)
54 changes: 54 additions & 0 deletions repro_dsp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
import torch
from torchaudio.prototype.functional import oscillator_bank, adsr_envelope

import matplotlib.pyplot as plt


def osci():
sample_rate = 8000
num_frames = 8000 * 3

freq = torch.ones((num_frames, 1)) * torch.tensor([[2000]]) # , 3000]])
amps = torch.ones_like(freq)
waveform32 = oscillator_bank(freq, amps, sample_rate)

freq = freq.to(torch.float64)
amps = freq.to(torch.float64)
waveform64 = oscillator_bank(freq, amps, sample_rate)

fig, axes = plt.subplots(2, 1, sharex=True, sharey=True)
fig.suptitle("Precision and waveform generated by oscillator_bank")
_, _, _, cax = axes[0].specgram(waveform32, Fs=sample_rate)
axes[0].set(title="float32", ylabel="Frequency [Hz]")
fig.colorbar(cax)

_, _, _, cax = axes[1].specgram(waveform64, Fs=sample_rate)
axes[1].set(title="float64", xlabel="time [s]", ylabel="Frequency [Hz]")
plt.colorbar(cax)
plt.tight_layout()
plt.subplots_adjust(left=0.2, top=0.85, right=0.9,bottom=0.15)
fig.savefig("oscillator_precision.png", dpi=200, transparent=True)


def adsr():
num_frames = 8000
configs = [
{"attack": 0.2, "hold": 0.2, "decay": 0.2, "sustain": 0.5, "release": 0.2},
{"attack": 0.02, "decay": 0.98, "sustain": 0, "release": 0},
{"attack": 0.01, "hold": 0.3, "decay": 0.05, "sustain": 0.01, "release": 0},
{"attack": 0.98, "decay": 0, "sustain": 1, "release": 0.02},
]
waveforms = [adsr_envelope(**config, num_frames=num_frames) for config in configs]
t = torch.linspace(0, 1.0, num_frames)

fig, axes = plt.subplots(len(configs), 1, sharex=True, sharey=True)
for ax, config, waveform in zip(axes, configs, waveforms):
ax.plot(t, waveform)
ax.grid(True)
ax.set(title=', '.join(f'{k}: {v}' for k, v in config.items()))
fig.tight_layout()
fig.savefig("adsr.png", dpi=200)

# osci()
adsr()
plt.show()