-
Notifications
You must be signed in to change notification settings - Fork 169
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
float8 training axiswise scaling support with per-gemm-argument configuration #940
Conversation
Stack from ghstack (oldest at bottom): |
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/pytorch/ao/940
Note: Links to docs will display an error until the docs builds have been completed. ✅ No FailuresAs of commit b536435 with merge base e76db70 (): This comment was automatically generated by Dr. CI and updates every 15 minutes. |
Summary: My brain hurts from so many long identifiers... Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: de754d285a15ebc7ab7f4e963a93a8696403d70e ghstack-comment-id: 2372563439 Pull Request resolved: #940
Summary: My brain hurts from so many long identifiers... Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: bf83d2e1d0b881777f0b6b6a457d735439a13bcc ghstack-comment-id: 2372563439 Pull Request resolved: #940
Summary: My brain hurts from so many long identifiers... Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 0cfb3bb31bf908256b254e00317c7368434abea0 ghstack-comment-id: 2372563439 Pull Request resolved: #940
Summary: My brain hurts from so many long identifiers... Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 3eaa2df5258fc3795eaf9a86c892248889d06cb2 ghstack-comment-id: 2372563439 Pull Request resolved: #940
Summary: My brain hurts from so many long identifiers... Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: c13c0ee8f000127a3beec28c90ad0467f8774a29 ghstack-comment-id: 2372563439 Pull Request resolved: #940
Summary: My brain hurts from so many long identifiers... Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 3dcb57ff71343b09b5ab6d4bc70b766c35854911 ghstack-comment-id: 2372563439 Pull Request resolved: #940
Summary: My brain hurts from so many long identifiers... Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 4b97519d234404f72ed56f2608417ff9ca43edf9 ghstack-comment-id: 2372563439 Pull Request resolved: #940
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks for taking care of this! LGTM!
torchao/float8/config.py
Outdated
# If True, this tensor is not scaled to float8 and left in its original | ||
# precision. | ||
# TODO(ideally before this PR lands): a better name for this | ||
keep_in_original_precision: bool = False |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Alternative: add a ScalingType.DISABLED
option?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
IMO if we are configuring scaling via N different knobs (type, granularity, scale, etc) and we have "disabled" for one of the knobs, we also need "disabled" for all the other knobs to avoid inconsistencies. Having the "disable" at the level of CastConfig seems like a cleaner way to configure this, although I don't love the name.
How about this:
Float8LinearConfig(...):
# if cast config is specified, use it to scale/cast
# if cast config is None, leave the tensor in original precision
cast_config_input: Optional[CastConfig]
...
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Float8LinearConfig(...): # if cast config is specified, use it to scale/cast # if cast config is None, leave the tensor in original precision cast_config_input: Optional[CastConfig] ...
Realized that this conflicts with the current behavior of using None
for the per-gemm-input override of input|weight|grad_output to mean "use the original config". Going to take your suggestion instead, the inconsistency is minor.
class _Float8LinearRecipeName(enum.Enum): | ||
ALL_TENSORWISE = "all_tensorwise" | ||
ALL_AXISWISE = "all_axiswise" | ||
LW_AXISWISE_WITH_GW_HP = "lw_axiswise_with_gw_hp" |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Lol, are you really gonna name this recipe after me? :P
Summary: My brain hurts from so many long identifiers... Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 71d847f5c6666ff307062f8cea25c50c398a1774 ghstack-comment-id: 2372563439 Pull Request resolved: #940
Summary: My brain hurts from so many long identifiers... Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: ce6eb7d45c669d5e1555f5cb424c54f3ef5bc534 ghstack-comment-id: 2372563439 Pull Request resolved: #940
Summary: My brain hurts from so many long identifiers... Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 816eaa1b75bc30ca6f859d70388d51635971e3f7 ghstack-comment-id: 2372563439 Pull Request resolved: #940
Summary: My brain hurts from so many long identifiers... Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 74601dd2d043dfcaab792f1d40c071959675e27e ghstack-comment-id: 2372563439 Pull Request resolved: #940
Summary: My brain hurts from so many long identifiers... Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: a565ff43fab0421406b5634c8946136bea58ca2c ghstack-comment-id: 2372563439 Pull Request resolved: #940
Summary: My brain hurts from so many long identifiers... Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: c89617546866ee882231f66cc086bf8ae2b8951d ghstack-comment-id: 2372563439 Pull Request resolved: #940
Summary: My brain hurts from so many long identifiers... Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: abb4fcbd1c41fafb29cc40ab7cfa296eaec60972 ghstack-comment-id: 2372563439 Pull Request resolved: #940
Summary: My brain hurts from so many long identifiers... Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 26b3b8ff4e59cc59bf4580056575e25ca7492d4f ghstack-comment-id: 2372563439 Pull Request resolved: #940
Summary: My brain hurts from so many long identifiers... Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: ba2f870e5e0bcda12164d81995b496b9756e86b5 ghstack-comment-id: 2372563439 Pull Request resolved: #940
Summary: My brain hurts from so many long identifiers... Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: c461f25c0725c6882b4d884bbe0cd08f159579ac ghstack-comment-id: 2372563439 Pull Request resolved: #940
…guration (#940) Summary: This PR finalizes the UX for axiswise scaling for float8 training, and introduces per-gemm-argument configurability to Float8Linear to enable exploration of future recipes. Not all combinations are supported yet. Specifically, the additional combination we now support and test is a recipe from @lw , where we do the following: ``` output_hp = input_fp8_axiswise_dim0 @ weight_t_axiswise_dim1 grad_input_hp = grad_output_fp8_axiswise_dim0 @ weight_fp8_tensorwise grad_weight_hp = input_t_hp @ grad_output_hp ``` Key characteristics of this recipe: 1. increased accuracy for `grad_weight`, which is important for real workloads 2. `output` and `weight` now only need to be scaled axiswise across a single dim compared to vanilla all-axiswise, which is more amenable to fast kernels Here is how a user can configure this: ```python # # short form # config = torchao.float8.config.recipe_name_to_linear_config(Float8LinearRecipeName.LW_AXISWISE_WITH_GW_HP) # # or, long form # # output_hp = input_fp8_axiswise_dim0 @ weight_t_axiswise_dim1 cc_i = CastConfig(scaling_granularity=ScalingGranularity.AXISWISE) cc_w = CastConfig(scaling_granularity=ScalingGranularity.AXISWISE) # grad_input_hp = grad_output_fp8_axiswise_dim0 @ weight_fp8_tensorwise cc_go = CastConfig(scaling_granularity=ScalingGranularity.AXISWISE) cc_w_go = CastConfig(scaling_granularity=ScalingGranularity.TENSORWISE) # grad_weight_hp = input_t_hp @ grad_output_hp cc_i_gw = CastConfig(scaling_type=ScalingType.DISABLED) cc_go_gw = CastConfig(scaling_type=ScalingType.DISABLED) # ensure fast_accum is on to get fast kernels gc_o = Float8GemmConfig(use_fast_accum=True) gc_gi = Float8GemmConfig(use_fast_accum=True) gc_gw = Float8GemmConfig(use_fast_accum=True) config = Float8Config( cast_config_input = cc_i, cast_config_weight = cc_w, cast_config_grad_output = cc_go, cast_config_input_for_grad_weight = cc_i_gw, cast_config_weight_for_grad_output = cc_w_go, cast_config_grad_output_for_grad_weight = cc_go_gw, gemm_config_output=gc_o, gemm_config_grad_input=gc_gi, gemm_config_grad_weight=gc_gw, ) ``` # performance Below we provide basic performance characteristics of axiswise scaling in general, and the all-axiswise and lw recipes. ## gemm performance of torch._scaled_mm baseline: tensorwise scaling ``` > python benchmarks/float8/bench_matmul.py --shape_gen_name square --use_gpu_kernel_time True fast_accum name M K N ref_time_s fp8_time_s fp8_speedup 0 True 0 256 256 256 0.000004 0.000006 0.573115 1 True 1 512 512 512 0.000005 0.000007 0.659333 2 True 2 1024 1024 1024 0.000011 0.000010 1.080664 3 True 3 2048 2048 2048 0.000028 0.000017 1.596239 4 True 4 4096 4096 4096 0.000210 0.000082 2.551705 5 True 5 8192 8192 8192 0.001671 0.000680 2.457972 6 True 6 16384 16384 16384 0.015030 0.006498 2.313032 7 True 7 32768 32768 32768 0.103236 0.048097 2.146411 8 False 0 256 256 256 0.000004 0.000006 0.630061 9 False 1 512 512 512 0.000005 0.000007 0.767236 10 False 2 1024 1024 1024 0.000012 0.000008 1.391347 11 False 3 2048 2048 2048 0.000029 0.000020 1.457922 12 False 4 4096 4096 4096 0.000211 0.000101 2.100081 13 False 5 8192 8192 8192 0.001676 0.000788 2.128628 14 False 6 16384 16384 16384 0.014933 0.006351 2.351209 15 False 7 32768 32768 32768 0.103457 0.049498 2.090134 ``` experiment: axiswise-scaling ``` > python benchmarks/float8/bench_matmul.py --shape_gen_name square --use_gpu_kernel_time True --scaling_granularity axiswise fast_accum name M K N ref_time_s fp8_time_s fp8_speedup 0 True 0 256 256 256 0.000004 0.000004 0.966772 1 True 1 512 512 512 0.000005 0.000004 1.095791 2 True 2 1024 1024 1024 0.000011 0.000006 1.988363 3 True 3 2048 2048 2048 0.000027 0.000015 1.890065 4 True 4 4096 4096 4096 0.000210 0.000082 2.552356 5 True 5 8192 8192 8192 0.001674 0.001092 1.533132 6 True 6 16384 16384 16384 0.015114 0.008785 1.720480 7 True 7 32768 32768 32768 0.103286 0.071456 1.445439 8 False 0 256 256 256 0.000004 0.000004 0.899054 9 False 1 512 512 512 0.000005 0.000005 1.005340 10 False 2 1024 1024 1024 0.000011 0.000006 1.692868 11 False 3 2048 2048 2048 0.000028 0.000049 0.567655 12 False 4 4096 4096 4096 0.000210 0.000341 0.616193 13 False 5 8192 8192 8192 0.001678 0.002640 0.635541 14 False 6 16384 16384 16384 0.015051 0.021557 0.698212 15 False 7 32768 32768 32768 0.103497 0.169797 0.609533 ``` ## performance on microbenchmark of ln -> linear -> sigmoid Note: for large square shapes, performance tends to be fp8_delayed_tensorwise > fp8_dynamic_tensorwise > fp8_dynamic_axiswise > custom_recipe. For performance of fp8_dynamic_axiswise, it seems that the gap from tensorwise is mostly due to the gemm performance being behind tensorwise. ``` > python benchmarks/float8/float8_roofline.py ~/local/tmp/20241004_roofline.csv fwd_M fwd_K fwd_N bf16_gemm_s fp8_gemm_s fp8_axs_gemm_time_s fp8_oh_dyn_limit ... fp8_del_s fp8_dyn_axs_s fp8_lw_s fp8_dyn_sp fp8_del_sp fp8_dyn_axs_sp fp8_lw_sp 0 256 256 256 0.000011 0.000018 0.000012 6.50457971014493e-6 ... 0.000043 0.000049 0.000030 0.465634 0.457907 0.398357 0.643088 1 512 512 512 0.000014 0.000020 0.000013 8.01831884057971e-6 ... 0.000047 0.000054 0.000034 0.489556 0.493467 0.432643 0.685842 2 1024 1024 1024 0.000033 0.000026 0.000017 1.40732753623188e-5 ... 0.000060 0.000063 0.000050 0.734123 0.741467 0.705941 0.891199 3 2048 2048 2048 0.000081 0.000055 0.000044 3.82931014492754e-5 ... 0.000147 0.000159 0.000142 0.815678 0.800811 0.739865 0.827441 4 4096 4096 4096 0.000632 0.000274 0.000247 0.000135172405797101 ... 0.000602 0.000622 0.000662 1.236320 1.261848 1.221755 1.147678 5 8192 8192 8192 0.005027 0.002216 0.003292 0.000522689623188406 ... 0.003665 0.004776 0.005720 1.432213 1.513035 1.161130 0.969448 6 16384 16384 16384 0.045113 0.018975 0.025706 0.00207275849275362 ... 0.024664 0.032254 0.038051 1.803456 1.883291 1.440118 1.220738 7 32768 32768 32768 0.312459 0.147255 0.214492 0.00827303397101449 ... 0.182645 0.240962 0.270973 1.696376 1.766307 1.338827 1.190552 ``` ## performance on torchtitan LLaMa 3 8B on 8 H100 GPUs, float8 compute only: * baseline (bf16 + compile): 6,294 wps * f8 all-tensorwise: 7,359 wps (1.17x vs baseline) * f8 all-axiswise: 7,135 wps (1.13x vs baseline - surprising that this is close to all-tensorwise) * LW_AXISWISE_WITH_GW_HP: 6,506 wps (1.03x vs baseline) so, looks like we have performance work to do with `LW_AXISWISE_WITH_GW_HP` in future PRs # accuracy I did a very quick check that loss curves on torchtitan LLaMa 3 8B pretraining with 8 H100 GPUs look good for bf16/f8_tensorwise/f8_axiswise/f8_lw on 0.5k iterations. I will leave longer accuracy verifications for future work. <img width="973" alt="Screenshot 2024-10-04 at 10 05 24 PM" src="https://github.com/user-attachments/assets/0d682183-41ef-4f04-992f-cd0d0fc8a65c"> Test Plan: Reviewers: Subscribers: Tasks: Tags:
…guration (#940) Summary: This PR finalizes the UX for axiswise scaling for float8 training, and introduces per-gemm-argument configurability to Float8Linear to enable exploration of future recipes. Not all combinations are supported yet. Specifically, the additional combination we now support and test is a recipe from @lw , where we do the following: ``` output_hp = input_fp8_axiswise_dim0 @ weight_t_axiswise_dim1 grad_input_hp = grad_output_fp8_axiswise_dim0 @ weight_fp8_tensorwise grad_weight_hp = input_t_hp @ grad_output_hp ``` Key characteristics of this recipe: 1. increased accuracy for `grad_weight`, which is important for real workloads 2. `output` and `weight` now only need to be scaled axiswise across a single dim compared to vanilla all-axiswise, which is more amenable to fast kernels Here is how a user can configure this: ```python # # short form # config = torchao.float8.config.recipe_name_to_linear_config(Float8LinearRecipeName.LW_AXISWISE_WITH_GW_HP) # # or, long form # # output_hp = input_fp8_axiswise_dim0 @ weight_t_axiswise_dim1 cc_i = CastConfig(scaling_granularity=ScalingGranularity.AXISWISE) cc_w = CastConfig(scaling_granularity=ScalingGranularity.AXISWISE) # grad_input_hp = grad_output_fp8_axiswise_dim0 @ weight_fp8_tensorwise cc_go = CastConfig(scaling_granularity=ScalingGranularity.AXISWISE) cc_w_go = CastConfig(scaling_granularity=ScalingGranularity.TENSORWISE) # grad_weight_hp = input_t_hp @ grad_output_hp cc_i_gw = CastConfig(scaling_type=ScalingType.DISABLED) cc_go_gw = CastConfig(scaling_type=ScalingType.DISABLED) # ensure fast_accum is on to get fast kernels gc_o = Float8GemmConfig(use_fast_accum=True) gc_gi = Float8GemmConfig(use_fast_accum=True) gc_gw = Float8GemmConfig(use_fast_accum=True) config = Float8Config( cast_config_input = cc_i, cast_config_weight = cc_w, cast_config_grad_output = cc_go, cast_config_input_for_grad_weight = cc_i_gw, cast_config_weight_for_grad_output = cc_w_go, cast_config_grad_output_for_grad_weight = cc_go_gw, gemm_config_output=gc_o, gemm_config_grad_input=gc_gi, gemm_config_grad_weight=gc_gw, ) ``` # performance Below we provide basic performance characteristics of axiswise scaling in general, and the all-axiswise and lw recipes. ## gemm performance of torch._scaled_mm baseline: tensorwise scaling ``` > python benchmarks/float8/bench_matmul.py --shape_gen_name square --use_gpu_kernel_time True fast_accum name M K N ref_time_s fp8_time_s fp8_speedup 0 True 0 256 256 256 0.000004 0.000006 0.573115 1 True 1 512 512 512 0.000005 0.000007 0.659333 2 True 2 1024 1024 1024 0.000011 0.000010 1.080664 3 True 3 2048 2048 2048 0.000028 0.000017 1.596239 4 True 4 4096 4096 4096 0.000210 0.000082 2.551705 5 True 5 8192 8192 8192 0.001671 0.000680 2.457972 6 True 6 16384 16384 16384 0.015030 0.006498 2.313032 7 True 7 32768 32768 32768 0.103236 0.048097 2.146411 8 False 0 256 256 256 0.000004 0.000006 0.630061 9 False 1 512 512 512 0.000005 0.000007 0.767236 10 False 2 1024 1024 1024 0.000012 0.000008 1.391347 11 False 3 2048 2048 2048 0.000029 0.000020 1.457922 12 False 4 4096 4096 4096 0.000211 0.000101 2.100081 13 False 5 8192 8192 8192 0.001676 0.000788 2.128628 14 False 6 16384 16384 16384 0.014933 0.006351 2.351209 15 False 7 32768 32768 32768 0.103457 0.049498 2.090134 ``` experiment: axiswise-scaling ``` > python benchmarks/float8/bench_matmul.py --shape_gen_name square --use_gpu_kernel_time True --scaling_granularity axiswise fast_accum name M K N ref_time_s fp8_time_s fp8_speedup 0 True 0 256 256 256 0.000004 0.000004 0.966772 1 True 1 512 512 512 0.000005 0.000004 1.095791 2 True 2 1024 1024 1024 0.000011 0.000006 1.988363 3 True 3 2048 2048 2048 0.000027 0.000015 1.890065 4 True 4 4096 4096 4096 0.000210 0.000082 2.552356 5 True 5 8192 8192 8192 0.001674 0.001092 1.533132 6 True 6 16384 16384 16384 0.015114 0.008785 1.720480 7 True 7 32768 32768 32768 0.103286 0.071456 1.445439 8 False 0 256 256 256 0.000004 0.000004 0.899054 9 False 1 512 512 512 0.000005 0.000005 1.005340 10 False 2 1024 1024 1024 0.000011 0.000006 1.692868 11 False 3 2048 2048 2048 0.000028 0.000049 0.567655 12 False 4 4096 4096 4096 0.000210 0.000341 0.616193 13 False 5 8192 8192 8192 0.001678 0.002640 0.635541 14 False 6 16384 16384 16384 0.015051 0.021557 0.698212 15 False 7 32768 32768 32768 0.103497 0.169797 0.609533 ``` ## performance on microbenchmark of ln -> linear -> sigmoid Note: for large square shapes, performance tends to be fp8_delayed_tensorwise > fp8_dynamic_tensorwise > fp8_dynamic_axiswise > custom_recipe. For performance of fp8_dynamic_axiswise, it seems that the gap from tensorwise is mostly due to the gemm performance being behind tensorwise. ``` > python benchmarks/float8/float8_roofline.py ~/local/tmp/20241004_roofline.csv fwd_M fwd_K fwd_N bf16_gemm_s fp8_gemm_s fp8_axs_gemm_time_s fp8_oh_dyn_limit ... fp8_del_s fp8_dyn_axs_s fp8_lw_s fp8_dyn_sp fp8_del_sp fp8_dyn_axs_sp fp8_lw_sp 0 256 256 256 0.000011 0.000018 0.000012 6.50457971014493e-6 ... 0.000043 0.000049 0.000030 0.465634 0.457907 0.398357 0.643088 1 512 512 512 0.000014 0.000020 0.000013 8.01831884057971e-6 ... 0.000047 0.000054 0.000034 0.489556 0.493467 0.432643 0.685842 2 1024 1024 1024 0.000033 0.000026 0.000017 1.40732753623188e-5 ... 0.000060 0.000063 0.000050 0.734123 0.741467 0.705941 0.891199 3 2048 2048 2048 0.000081 0.000055 0.000044 3.82931014492754e-5 ... 0.000147 0.000159 0.000142 0.815678 0.800811 0.739865 0.827441 4 4096 4096 4096 0.000632 0.000274 0.000247 0.000135172405797101 ... 0.000602 0.000622 0.000662 1.236320 1.261848 1.221755 1.147678 5 8192 8192 8192 0.005027 0.002216 0.003292 0.000522689623188406 ... 0.003665 0.004776 0.005720 1.432213 1.513035 1.161130 0.969448 6 16384 16384 16384 0.045113 0.018975 0.025706 0.00207275849275362 ... 0.024664 0.032254 0.038051 1.803456 1.883291 1.440118 1.220738 7 32768 32768 32768 0.312459 0.147255 0.214492 0.00827303397101449 ... 0.182645 0.240962 0.270973 1.696376 1.766307 1.338827 1.190552 ``` ## performance on torchtitan LLaMa 3 8B on 8 H100 GPUs, float8 compute only: * baseline (bf16 + compile): 6,294 wps * f8 all-tensorwise: 7,359 wps (1.17x vs baseline) * f8 all-axiswise: 7,135 wps (1.13x vs baseline - surprising that this is close to all-tensorwise) * LW_AXISWISE_WITH_GW_HP: 6,506 wps (1.03x vs baseline) so, looks like we have performance work to do with `LW_AXISWISE_WITH_GW_HP` in future PRs # accuracy I did a very quick check that loss curves on torchtitan LLaMa 3 8B pretraining with 8 H100 GPUs look good for bf16/f8_tensorwise/f8_axiswise/f8_lw on 0.5k iterations. I will leave longer accuracy verifications for future work. <img width="973" alt="Screenshot 2024-10-04 at 10 05 24 PM" src="https://github.com/user-attachments/assets/0d682183-41ef-4f04-992f-cd0d0fc8a65c"> Test Plan: Reviewers: Subscribers: Tasks: Tags:
Summary:
This PR finalizes the UX for axiswise scaling for float8 training, and introduces per-gemm-argument configurability to Float8Linear to enable exploration of future recipes. Not all combinations are supported yet. Specifically, the additional combination we now support and test is a recipe from @lw , where we do the following:
Key characteristics of this recipe:
grad_weight
, which is important for real workloadsoutput
andweight
now only need to be scaled axiswise across a single dim compared to vanilla all-axiswise, which is more amenable to fast kernelsHere is how a user can configure this:
performance
Below we provide basic performance characteristics of axiswise scaling in general, and the all-axiswise and lw recipes.
gemm performance of torch._scaled_mm
baseline: tensorwise scaling
experiment: axiswise-scaling
performance on microbenchmark of ln -> linear -> sigmoid
Note: for large square shapes, performance tends to be fp8_delayed_tensorwise > fp8_dynamic_tensorwise > fp8_dynamic_axiswise > custom_recipe. For performance of fp8_dynamic_axiswise, it seems that the gap from tensorwise is mostly due to the gemm performance being behind tensorwise.
performance on torchtitan LLaMa 3 8B on 8 H100 GPUs, float8 compute only:
so, looks like we have performance work to do with
LW_AXISWISE_WITH_GW_HP
in future PRsaccuracy
I did a very quick check that loss curves on torchtitan LLaMa 3 8B pretraining with 8 H100 GPUs look good for bf16/f8_tensorwise/f8_axiswise/f8_lw on 0.5k iterations. I will leave longer accuracy verifications for future work.
Test Plan:
Reviewers:
Subscribers:
Tasks:
Tags: