-
Notifications
You must be signed in to change notification settings - Fork 294
Re-land the PR of "Add INT8 SDPA path for CPU" #2215
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,223 @@ | ||
import itertools | ||
import unittest | ||
|
||
import torch | ||
import torch.utils.checkpoint | ||
from torch._dynamo.utils import counters | ||
from torch._inductor import config | ||
from torch._inductor.test_case import TestCase, run_tests | ||
from torch._inductor.utils import run_and_get_code | ||
from torch.testing._internal.common_utils import IS_LINUX, skipIfRocm | ||
from torch.testing._internal.inductor_utils import HAS_CPU | ||
|
||
import torchao | ||
from torchao.prototype.inductor.fx_passes.int8_sdpa_fusion import ( | ||
_int8_sdpa_init, | ||
custom_pass, | ||
) | ||
from torchao.utils import TORCH_VERSION_AT_LEAST_2_7 | ||
|
||
|
||
class SelfAttnLikeModule(torch.nn.Module): | ||
def __init__( | ||
self, | ||
input_dim, | ||
has_mask, | ||
num_attention_heads=None, | ||
attention_head_size=None, | ||
) -> None: | ||
super().__init__() | ||
self.input_dim = input_dim | ||
self.q_proj = torch.nn.Linear(input_dim, input_dim, bias=False) | ||
self.k_proj = torch.nn.Linear(input_dim, input_dim, bias=False) | ||
self.v_proj = torch.nn.Linear(input_dim, input_dim, bias=False) | ||
self.softmax = torch.nn.Softmax(dim=-1) | ||
assert num_attention_heads is not None | ||
assert attention_head_size is not None | ||
self.num_attention_heads = num_attention_heads | ||
self.attention_head_size = attention_head_size | ||
self.all_head_size = self.num_attention_heads * self.attention_head_size | ||
self.dense = torch.nn.Linear(self.all_head_size, self.all_head_size) | ||
self.dropout = torch.nn.Dropout(0) | ||
self.has_mask = has_mask | ||
|
||
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: | ||
new_x_shape = x.size()[:-1] + ( | ||
self.num_attention_heads, | ||
self.attention_head_size, | ||
) | ||
x = x.view(new_x_shape) | ||
return x.permute([0, 2, 1, 3]) | ||
|
||
def forward(self, x, mask): | ||
q = self.q_proj(x) | ||
k = self.k_proj(x) | ||
v = self.v_proj(x) | ||
q = self.transpose_for_scores(q) | ||
k = self.transpose_for_scores(k) | ||
v = self.transpose_for_scores(v) | ||
scores = torch.matmul(q, k.transpose(-1, -2)) / (self.input_dim**0.5) | ||
if self.has_mask and mask.dtype != scores.dtype: | ||
scores = scores + mask | ||
attention = self.softmax(scores) | ||
attention = self.dropout(attention) | ||
context_layer = torch.matmul(attention, v) | ||
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | ||
context_layer = context_layer.view( | ||
context_layer.size()[:-2] + (self.all_head_size,) | ||
) | ||
return self.dense(context_layer) | ||
|
||
|
||
class TestSDPAPatternRewriterTemplate(TestCase): | ||
def _clone_inputs(self, inputs): | ||
def clone(x): | ||
if not isinstance(x, torch.Tensor): | ||
return x | ||
return x.clone() | ||
|
||
return [clone(x) for x in inputs] | ||
|
||
def _check_common( | ||
self, | ||
dot_prod_attention, | ||
args1=None, | ||
contains=True, | ||
atol=1e-5, | ||
has_fuse_pattern=True, | ||
has_dropout=False, | ||
check_train=True, | ||
override_check_equal=False, | ||
dtype=torch.float, | ||
rtol=1.3e-6, | ||
): | ||
if args1 is None: | ||
tensor_shape = (4, 2, 16, 32) | ||
args1 = [ | ||
torch.randn(tensor_shape, device=self.device, dtype=dtype), | ||
torch.randn(tensor_shape, device=self.device, dtype=dtype), | ||
torch.randn(tensor_shape, device=self.device, dtype=dtype), | ||
] | ||
else: | ||
args1 = list(args1) | ||
args2 = self._clone_inputs(args1) | ||
|
||
for training in [False, True] if check_train else [False]: | ||
for x in itertools.chain(args1[:], args2[:]): | ||
if isinstance(x, torch.Tensor) and x.is_floating_point(): | ||
x.requires_grad = training | ||
|
||
dropout_arg = [training] if has_dropout else [] | ||
torch.manual_seed(1234) | ||
result1 = dot_prod_attention(*(args1 + dropout_arg)) | ||
|
||
counters.clear() | ||
torch.manual_seed(1234) | ||
compiled_model = torch.compile(dot_prod_attention, fullgraph=True) | ||
result2, source_code = run_and_get_code( | ||
compiled_model, | ||
*(args2 + dropout_arg), | ||
) | ||
source_code = "\n".join(source_code) | ||
if has_fuse_pattern: | ||
self.assertGreaterEqual(counters["inductor"]["int8_fuse_attention"], 1) | ||
if contains: | ||
# many of the patterns get re-expanded in dispatcher | ||
self.assertIn( | ||
"torchao.qscaled_dot_product", | ||
source_code, | ||
) | ||
|
||
# some tests configured with very low dropout where we still want to check equality | ||
if not has_dropout or override_check_equal: | ||
self.assertEqual(result1, result2, atol=atol, rtol=1.3e-6) | ||
|
||
if training: | ||
result1.sum().backward() | ||
result2.sum().backward() | ||
for arg1, arg2 in zip(args1, args2): | ||
if ( | ||
isinstance(arg1, torch.Tensor) | ||
and arg1.is_floating_point() | ||
and (not has_dropout or override_check_equal) | ||
): | ||
self.assertEqual(arg1.grad, arg2.grad, atol=atol, rtol=rtol) | ||
|
||
@skipIfRocm | ||
@unittest.skipIf( | ||
not TORCH_VERSION_AT_LEAST_2_7, reason="int8 sdpa requires torch 2.7 or later" | ||
) | ||
@unittest.skipIf( | ||
"CPU" not in torch._C._dispatch_dump("torchao::qscaled_dot_product"), | ||
reason="cpp kernels not built", | ||
) | ||
@config.patch({"freezing": True}) | ||
def _test_sdpa_int8_rewriter(self): | ||
from torch.export import export_for_training | ||
|
||
import torchao.quantization.pt2e.quantizer.x86_inductor_quantizer as xiq | ||
from torchao.quantization.pt2e.quantize_pt2e import convert_pt2e, prepare_pt2e | ||
from torchao.quantization.pt2e.quantizer.x86_inductor_quantizer import ( | ||
X86InductorQuantizer, | ||
) | ||
|
||
# pattern is different for bs=1 | ||
torch.manual_seed(1234) | ||
for dtype, has_mask, bs in itertools.product( | ||
[torch.float32, torch.bfloat16], [True, False], [56, 1] | ||
): | ||
seqlen, numhead, headsize = 197, 16, 64 | ||
mod = SelfAttnLikeModule( | ||
input_dim=headsize * numhead, | ||
has_mask=has_mask, | ||
num_attention_heads=numhead, | ||
attention_head_size=headsize, | ||
).eval() | ||
inputs = ( | ||
torch.randn( | ||
(bs, seqlen, headsize * numhead), device=self.device, dtype=dtype | ||
), | ||
torch.randn((bs, 1, 1, seqlen), device=self.device) | ||
if has_mask | ||
else None, | ||
) | ||
enable_autocast = dtype == torch.bfloat16 | ||
with ( | ||
torch.no_grad(), | ||
torch.amp.autocast( | ||
self.device, enabled=enable_autocast, dtype=torch.bfloat16 | ||
), | ||
config.patch(post_grad_custom_pre_pass=custom_pass), | ||
): | ||
_int8_sdpa_init() | ||
quantizer = X86InductorQuantizer() | ||
quantizer.set_global(xiq.get_default_x86_inductor_quantization_config()) | ||
quantizer.set_function_type_qconfig( | ||
torch.matmul, quantizer.get_global_quantization_config() | ||
) | ||
export_model = export_for_training( | ||
mod, | ||
inputs, | ||
strict=True, | ||
).module() | ||
prepare_model = prepare_pt2e(export_model, quantizer) | ||
prepare_model(*inputs) | ||
convert_model = convert_pt2e(prepare_model) | ||
torchao.quantization.pt2e.move_exported_model_to_eval(convert_model) | ||
self._check_common( | ||
convert_model, args1=inputs, check_train=False, atol=1.0 | ||
) | ||
|
||
|
||
if HAS_CPU: | ||
|
||
class SDPAPatternRewriterCpuTests(TestSDPAPatternRewriterTemplate): | ||
device = "cpu" | ||
test_sdpa_int8_rewriter_cpu = ( | ||
TestSDPAPatternRewriterTemplate._test_sdpa_int8_rewriter | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
if IS_LINUX: | ||
run_tests() |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
For how to register the custom pass, could we follow the suggestion in pytorch/pytorch#153532 (comment)?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks and modified!