Skip to content

Re-land the PR of "Add INT8 SDPA path for CPU" #2215

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
May 21, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 25 additions & 0 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,10 @@ def read_version(file_path="version.txt"):
and platform.system() == "Darwin"
)

use_cpp_kernels = os.getenv("USE_CPP_KERNELS", "0") == "1"

from torchao.utils import TORCH_VERSION_AT_LEAST_2_7

version_prefix = read_version()
# Version is version.dev year month date if using nightlies and version if not
version = (
Expand Down Expand Up @@ -307,6 +311,21 @@ def get_extensions():
["-O3" if not debug_mode else "-O0", "-fdiagnostics-color=always"]
)

if (
use_cpp_kernels
and platform.system() == "Linux"
and TORCH_VERSION_AT_LEAST_2_7
):
if torch._C._cpu._is_avx512_supported():
extra_compile_args["cxx"].extend(
[
"-DCPU_CAPABILITY_AVX512",
"-march=native",
"-mfma",
"-fopenmp",
]
)

if debug_mode:
extra_compile_args["cxx"].append("-g")
if "nvcc" in extra_compile_args:
Expand All @@ -328,6 +347,12 @@ def get_extensions():

# Collect C++ source files
sources = list(glob.glob(os.path.join(extensions_dir, "**/*.cpp"), recursive=True))
if not use_cpp_kernels or platform.system() != "Linux":
# Remove csrc/cpu/*.cpp
excluded_sources = list(
glob.glob(os.path.join(extensions_dir, "cpu/*.cpp"), recursive=True)
)
sources = [s for s in sources if s not in excluded_sources]

extensions_cuda_dir = os.path.join(extensions_dir, "cuda")
cuda_sources = list(
Expand Down
223 changes: 223 additions & 0 deletions test/prototype/inductor/test_int8_sdpa_fusion.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,223 @@
import itertools
import unittest

import torch
import torch.utils.checkpoint
from torch._dynamo.utils import counters
from torch._inductor import config
from torch._inductor.test_case import TestCase, run_tests
from torch._inductor.utils import run_and_get_code
from torch.testing._internal.common_utils import IS_LINUX, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CPU

import torchao
from torchao.prototype.inductor.fx_passes.int8_sdpa_fusion import (
_int8_sdpa_init,
custom_pass,
)
from torchao.utils import TORCH_VERSION_AT_LEAST_2_7


class SelfAttnLikeModule(torch.nn.Module):
def __init__(
self,
input_dim,
has_mask,
num_attention_heads=None,
attention_head_size=None,
) -> None:
super().__init__()
self.input_dim = input_dim
self.q_proj = torch.nn.Linear(input_dim, input_dim, bias=False)
self.k_proj = torch.nn.Linear(input_dim, input_dim, bias=False)
self.v_proj = torch.nn.Linear(input_dim, input_dim, bias=False)
self.softmax = torch.nn.Softmax(dim=-1)
assert num_attention_heads is not None
assert attention_head_size is not None
self.num_attention_heads = num_attention_heads
self.attention_head_size = attention_head_size
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.dense = torch.nn.Linear(self.all_head_size, self.all_head_size)
self.dropout = torch.nn.Dropout(0)
self.has_mask = has_mask

def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
x = x.view(new_x_shape)
return x.permute([0, 2, 1, 3])

def forward(self, x, mask):
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
q = self.transpose_for_scores(q)
k = self.transpose_for_scores(k)
v = self.transpose_for_scores(v)
scores = torch.matmul(q, k.transpose(-1, -2)) / (self.input_dim**0.5)
if self.has_mask and mask.dtype != scores.dtype:
scores = scores + mask
attention = self.softmax(scores)
attention = self.dropout(attention)
context_layer = torch.matmul(attention, v)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
context_layer = context_layer.view(
context_layer.size()[:-2] + (self.all_head_size,)
)
return self.dense(context_layer)


class TestSDPAPatternRewriterTemplate(TestCase):
def _clone_inputs(self, inputs):
def clone(x):
if not isinstance(x, torch.Tensor):
return x
return x.clone()

return [clone(x) for x in inputs]

def _check_common(
self,
dot_prod_attention,
args1=None,
contains=True,
atol=1e-5,
has_fuse_pattern=True,
has_dropout=False,
check_train=True,
override_check_equal=False,
dtype=torch.float,
rtol=1.3e-6,
):
if args1 is None:
tensor_shape = (4, 2, 16, 32)
args1 = [
torch.randn(tensor_shape, device=self.device, dtype=dtype),
torch.randn(tensor_shape, device=self.device, dtype=dtype),
torch.randn(tensor_shape, device=self.device, dtype=dtype),
]
else:
args1 = list(args1)
args2 = self._clone_inputs(args1)

for training in [False, True] if check_train else [False]:
for x in itertools.chain(args1[:], args2[:]):
if isinstance(x, torch.Tensor) and x.is_floating_point():
x.requires_grad = training

dropout_arg = [training] if has_dropout else []
torch.manual_seed(1234)
result1 = dot_prod_attention(*(args1 + dropout_arg))

counters.clear()
torch.manual_seed(1234)
compiled_model = torch.compile(dot_prod_attention, fullgraph=True)
result2, source_code = run_and_get_code(
compiled_model,
*(args2 + dropout_arg),
)
source_code = "\n".join(source_code)
if has_fuse_pattern:
self.assertGreaterEqual(counters["inductor"]["int8_fuse_attention"], 1)
if contains:
# many of the patterns get re-expanded in dispatcher
self.assertIn(
"torchao.qscaled_dot_product",
source_code,
)

# some tests configured with very low dropout where we still want to check equality
if not has_dropout or override_check_equal:
self.assertEqual(result1, result2, atol=atol, rtol=1.3e-6)

if training:
result1.sum().backward()
result2.sum().backward()
for arg1, arg2 in zip(args1, args2):
if (
isinstance(arg1, torch.Tensor)
and arg1.is_floating_point()
and (not has_dropout or override_check_equal)
):
self.assertEqual(arg1.grad, arg2.grad, atol=atol, rtol=rtol)

@skipIfRocm
@unittest.skipIf(
not TORCH_VERSION_AT_LEAST_2_7, reason="int8 sdpa requires torch 2.7 or later"
)
@unittest.skipIf(
"CPU" not in torch._C._dispatch_dump("torchao::qscaled_dot_product"),
reason="cpp kernels not built",
)
@config.patch({"freezing": True})
def _test_sdpa_int8_rewriter(self):
from torch.export import export_for_training

import torchao.quantization.pt2e.quantizer.x86_inductor_quantizer as xiq
from torchao.quantization.pt2e.quantize_pt2e import convert_pt2e, prepare_pt2e
from torchao.quantization.pt2e.quantizer.x86_inductor_quantizer import (
X86InductorQuantizer,
)

# pattern is different for bs=1
torch.manual_seed(1234)
for dtype, has_mask, bs in itertools.product(
[torch.float32, torch.bfloat16], [True, False], [56, 1]
):
seqlen, numhead, headsize = 197, 16, 64
mod = SelfAttnLikeModule(
input_dim=headsize * numhead,
has_mask=has_mask,
num_attention_heads=numhead,
attention_head_size=headsize,
).eval()
inputs = (
torch.randn(
(bs, seqlen, headsize * numhead), device=self.device, dtype=dtype
),
torch.randn((bs, 1, 1, seqlen), device=self.device)
if has_mask
else None,
)
enable_autocast = dtype == torch.bfloat16
with (
torch.no_grad(),
torch.amp.autocast(
self.device, enabled=enable_autocast, dtype=torch.bfloat16
),
config.patch(post_grad_custom_pre_pass=custom_pass),
):
_int8_sdpa_init()
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For how to register the custom pass, could we follow the suggestion in pytorch/pytorch#153532 (comment)?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks and modified!

quantizer = X86InductorQuantizer()
quantizer.set_global(xiq.get_default_x86_inductor_quantization_config())
quantizer.set_function_type_qconfig(
torch.matmul, quantizer.get_global_quantization_config()
)
export_model = export_for_training(
mod,
inputs,
strict=True,
).module()
prepare_model = prepare_pt2e(export_model, quantizer)
prepare_model(*inputs)
convert_model = convert_pt2e(prepare_model)
torchao.quantization.pt2e.move_exported_model_to_eval(convert_model)
self._check_common(
convert_model, args1=inputs, check_train=False, atol=1.0
)


if HAS_CPU:

class SDPAPatternRewriterCpuTests(TestSDPAPatternRewriterTemplate):
device = "cpu"
test_sdpa_int8_rewriter_cpu = (
TestSDPAPatternRewriterTemplate._test_sdpa_int8_rewriter
)


if __name__ == "__main__":
if IS_LINUX:
run_tests()
Loading
Loading