Skip to content

Add module swap quantization API from Quanty #1886

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 14, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 56 additions & 0 deletions test/prototype/module_swap_quantization/test_kmeans_codebook.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
import copy
import unittest
from typing import Union

import torch
import torch.nn as nn

from torchao.prototype.quantization.module_swap import (
CodeBookQuantizer,
QuantizedLinear,
)
from torchao.prototype.quantization.module_swap.algorithms import kmeans_codebook


class SimpleTestNetwork(nn.Module):
def __init__(self, weight_group_size: Union[int, str] = "per_channel") -> None:
super().__init__()
if weight_group_size == "per_channel":
weight_group_size = 8
assert isinstance(weight_group_size, int)
weight_quantizer = CodeBookQuantizer(
n_bits=2,
features=16,
codebook_dim=2,
)

self.linear = QuantizedLinear(
in_features=16,
out_features=8,
bias=False,
weight_quantizer=weight_quantizer,
activation_bits=8,
input_quantization=False,
output_quantization=False,
weight_quantization=True,
activation_quantization=False,
)

def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.linear(x)


class TestKmeansCodebook(unittest.TestCase):
@unittest.skip("No module named 'faiss'")
def test_kmeans_codebook(self) -> None:
model = SimpleTestNetwork()
codebook_before = copy.deepcopy(model.linear.weight_quantizer.codebook)
kmeans_codebook(model)
assert not torch.allclose(
codebook_before,
model.linear.weight_quantizer.codebook,
)


if __name__ == "__main__":
unittest.main()
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
import unittest
from typing import Tuple

import torch
from transformers.models.llama.modeling_llama import LlamaConfig, LlamaForCausalLM

from torchao.prototype.quantization.module_swap.data_getters import LLMPTQDataGetter

test_config = LlamaConfig(
vocab_size=10,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=2,
intermediate_size=64,
)


def get_test_llama_model_data() -> Tuple[LlamaForCausalLM, torch.Tensor]:
model = LlamaForCausalLM(test_config)
input_ids = torch.randint(0, test_config.vocab_size, (1, 10))
return model, input_ids


class TestPTQDataGetter(unittest.TestCase):
@unittest.skip("TypeError: cannot unpack non-iterable NoneType object")
def test_data_getter(self) -> None:
model, data = get_test_llama_model_data()
data_getter = LLMPTQDataGetter(model, data, 1)
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
data = data_getter.pop(model, name)


if __name__ == "__main__":
unittest.main()
35 changes: 35 additions & 0 deletions test/prototype/module_swap_quantization/test_module_swap.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
import unittest

import torch
import torch.nn as nn

from torchao.prototype.quantization.module_swap import (
QuantizationRecipe,
quantize_module_swap,
)


class SimpleEmbeddingTestNetwork(nn.Module):
def __init__(self) -> None:
super().__init__()
self.embedding = nn.Embedding(10, 64)

def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.embedding(x)


class TestEmbeddingSwap(unittest.TestCase):
def test_embedding_swap(self) -> None:
model = SimpleEmbeddingTestNetwork()
recipe = QuantizationRecipe()
recipe.embedding_bits = 4
recipe.embedding_quantization = True
model = quantize_module_swap(model, recipe)
x = torch.randint(0, 10, (10, 64))
model(x)
assert model.embedding.weight_quantizer.num_bits == 4
assert model.embedding.weight_quantizer.group_size == 32


if __name__ == "__main__":
unittest.main()
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
import unittest

import torch
from transformers.models.llama.modeling_llama import LlamaConfig, LlamaForCausalLM

from torchao.prototype.quantization.module_swap import QuantizedLinear
from torchao.prototype.quantization.module_swap.module_swap import (
QuantizationRecipe,
replace_all_linear_with_quantized_linear,
)
from torchao.prototype.quantization.module_swap.utils import set_bit_widths_by_name

test_config = LlamaConfig(
vocab_size=10,
hidden_size=32,
num_hidden_layers=1,
num_attention_heads=2,
intermediate_size=64,
)

base_recipe = QuantizationRecipe(
weight_bits=4,
weight_group_size=32,
weight_quantization=True,
dynamic_weights=False,
activation_bits=8,
activation_group_size="per_token",
activation_quantization=True,
input_quantization=True,
output_quantization=True,
dynamic_activations=True,
range_learning=False,
exclude_layers=["lm_head"],
)


def get_test_llama_model_data() -> tuple[LlamaForCausalLM, torch.Tensor]:
model = LlamaForCausalLM(test_config)
input_ids = torch.randint(0, test_config.vocab_size, (1, 10))
return model, input_ids


class TestQuantizedModuleUtils(unittest.TestCase):
def test_set_bit_widths_by_name(self) -> None:
model, _ = get_test_llama_model_data()
replace_all_linear_with_quantized_linear(model, base_recipe)

bit_width_dict = {}
for name, module in model.named_modules():
if isinstance(module, QuantizedLinear):
bit_width_dict[name] = {"weight": 7, "activation": 9}

set_bit_widths_by_name(model, bit_width_dict)

for _, module in model.named_modules():
if isinstance(module, QuantizedLinear):
assert module.weight_quantizer.num_bits == 7
assert module.input_quantizer is not None
assert module.input_quantizer.num_bits == 9
assert module.output_quantizer is not None
assert module.output_quantizer.num_bits == 9


if __name__ == "__main__":
unittest.main()
Loading
Loading