Skip to content

chore: Fixes required for LLM models #3002

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 69 commits into from
Aug 29, 2024
Merged

chore: Fixes required for LLM models #3002

merged 69 commits into from
Aug 29, 2024

Conversation

peri044
Copy link
Collaborator

@peri044 peri044 commented Jul 11, 2024

Description

  1. Converter additions for LLM models
  2. Fix memory allocations on GPU - Models can now be exported on CPU and only use GPU for TRT compilation.
Inputs: List[Tensor: (1, (min=1, max=64))@int64]
    ...
    TRT Engine #1 - Submodule name: _run_on_acc_0
     Engine Inputs: List[Tensor: (1, (min=1, max=64))@int64]
     Number of Operators in Engine: 143
     Engine Outputs: List[Tensor: (1, (min=1, max=64), 32000)@float32]
    ...
   Outputs: List[Tensor: (1, (min=1, max=64), 32000)@float32]
  1. Modifications to dryrun tracker to handle dynamic shapes.
  2. LLM examples

Type of change

Please delete options that are not relevant and/or add your own.

  • Bug fix (non-breaking change which fixes an issue)
  • New feature (non-breaking change which adds functionality)
  • Breaking change (fix or feature that would cause existing functionality to not work as expected)
  • This change requires a documentation update

Checklist:

  • My code follows the style guidelines of this project (You can use the linters)
  • I have performed a self-review of my own code
  • I have commented my code, particularly in hard-to-understand areas and hacks
  • I have made corresponding changes to the documentation
  • I have added tests to verify my fix or my feature
  • New and existing unit tests pass locally with my changes
  • I have added the relevant labels to my PR in so that relevant reviewers are notified

@github-actions github-actions bot added component: lowering Issues re: The lowering / preprocessing passes component: conversion Issues re: Conversion stage component: converters Issues re: Specific op converters component: api [Python] Issues re: Python API component: dynamo Issues relating to the `torch.compile` or `torch._dynamo.export` paths labels Jul 11, 2024
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to Python style guidelines:

--- /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_DryRunTracker.py	2024-08-19 21:00:09.967336+00:00
+++ /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_DryRunTracker.py	2024-08-19 21:00:32.451960+00:00
@@ -224,20 +224,22 @@
    """Format shapes and dtypes of input Tensors into a readable string"""

    def input_formatter_helper(shapes: Any, dtypes: Any) -> str:
        """Helper for input formatter"""
        # Base case 1 - single static/dynamic shape, single dtype
-        if isinstance(shapes, tuple) and all(isinstance(elt, (int, tuple)) for elt in shapes):
+        if isinstance(shapes, tuple) and all(
+            isinstance(elt, (int, tuple)) for elt in shapes
+        ):
            input_shape_string = "Tensor: ("
            for elt in shapes:
                if isinstance(elt, tuple):
-                    input_shape_string+= f"(min={elt[0]}, max={elt[1]}), "
+                    input_shape_string += f"(min={elt[0]}, max={elt[1]}), "
                else:
-                    input_shape_string+= f"{elt}, "
+                    input_shape_string += f"{elt}, "
            input_shape_string = input_shape_string[:-2] + ")" + f"@{str(dtypes)[6:]}, "
            return input_shape_string
-        
+
        # Base case 2 - dynamic shape, single dtype
        elif (
            isinstance(shapes, dict)
            and len(shapes) == 3
            and all(
--- /home/runner/work/TensorRT/TensorRT/tools/perf/utils.py	2024-08-19 21:00:10.003336+00:00
+++ /home/runner/work/TensorRT/TensorRT/tools/perf/utils.py	2024-08-19 21:00:37.999905+00:00
@@ -28,19 +28,16 @@
}


def load_hf_model(model_name_hf):
    print("Loading user-specified HF model: ", model_name_hf)
-    model_hf = (
-        AutoModelForCausalLM.from_pretrained(
-            model_name_hf,
-            trust_remote_code=True,
-            use_cache=False,
-            attn_implementation="eager",
-        )
-        .eval()
-    )
+    model_hf = AutoModelForCausalLM.from_pretrained(
+        model_name_hf,
+        trust_remote_code=True,
+        use_cache=False,
+        attn_implementation="eager",
+    ).eval()

    return {"model": model_hf}


class ModelStorage:

@peri044 peri044 requested a review from narendasan August 20, 2024 22:08
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to Python style guidelines:

--- /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_DryRunTracker.py	2024-08-20 22:09:12.087830+00:00
+++ /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_DryRunTracker.py	2024-08-20 22:09:32.444447+00:00
@@ -224,20 +224,22 @@
    """Format shapes and dtypes of input Tensors into a readable string"""

    def input_formatter_helper(shapes: Any, dtypes: Any) -> str:
        """Helper for input formatter"""
        # Base case 1 - single static/dynamic shape, single dtype
-        if isinstance(shapes, tuple) and all(isinstance(elt, (int, tuple)) for elt in shapes):
+        if isinstance(shapes, tuple) and all(
+            isinstance(elt, (int, tuple)) for elt in shapes
+        ):
            input_shape_string = "Tensor: ("
            for elt in shapes:
                if isinstance(elt, tuple):
-                    input_shape_string+= f"(min={elt[0]}, max={elt[1]}), "
+                    input_shape_string += f"(min={elt[0]}, max={elt[1]}), "
                else:
-                    input_shape_string+= f"{elt}, "
+                    input_shape_string += f"{elt}, "
            input_shape_string = input_shape_string[:-2] + ")" + f"@{str(dtypes)[6:]}, "
            return input_shape_string
-        
+
        # Base case 2 - dynamic shape, single dtype
        elif (
            isinstance(shapes, dict)
            and len(shapes) == 3
            and all(
--- /home/runner/work/TensorRT/TensorRT/tools/perf/utils.py	2024-08-20 22:09:12.123831+00:00
+++ /home/runner/work/TensorRT/TensorRT/tools/perf/utils.py	2024-08-20 22:09:37.620289+00:00
@@ -28,19 +28,16 @@
}


def load_hf_model(model_name_hf):
    print("Loading user-specified HF model: ", model_name_hf)
-    model_hf = (
-        AutoModelForCausalLM.from_pretrained(
-            model_name_hf,
-            trust_remote_code=True,
-            use_cache=False,
-            attn_implementation="eager",
-        )
-        .eval()
-    )
+    model_hf = AutoModelForCausalLM.from_pretrained(
+        model_name_hf,
+        trust_remote_code=True,
+        use_cache=False,
+        attn_implementation="eager",
+    ).eval()

    return {"model": model_hf}


class ModelStorage:

@github-actions github-actions bot removed the component: tests Issues re: Tests label Aug 21, 2024
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to Python style guidelines:

--- /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_DryRunTracker.py	2024-08-21 00:33:04.790449+00:00
+++ /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_DryRunTracker.py	2024-08-21 00:33:27.241394+00:00
@@ -224,20 +224,22 @@
    """Format shapes and dtypes of input Tensors into a readable string"""

    def input_formatter_helper(shapes: Any, dtypes: Any) -> str:
        """Helper for input formatter"""
        # Base case 1 - single static/dynamic shape, single dtype
-        if isinstance(shapes, tuple) and all(isinstance(elt, (int, tuple)) for elt in shapes):
+        if isinstance(shapes, tuple) and all(
+            isinstance(elt, (int, tuple)) for elt in shapes
+        ):
            input_shape_string = "Tensor: ("
            for elt in shapes:
                if isinstance(elt, tuple):
-                    input_shape_string+= f"(min={elt[0]}, max={elt[1]}), "
+                    input_shape_string += f"(min={elt[0]}, max={elt[1]}), "
                else:
-                    input_shape_string+= f"{elt}, "
+                    input_shape_string += f"{elt}, "
            input_shape_string = input_shape_string[:-2] + ")" + f"@{str(dtypes)[6:]}, "
            return input_shape_string
-        
+
        # Base case 2 - dynamic shape, single dtype
        elif (
            isinstance(shapes, dict)
            and len(shapes) == 3
            and all(
--- /home/runner/work/TensorRT/TensorRT/tools/perf/utils.py	2024-08-21 00:33:04.830449+00:00
+++ /home/runner/work/TensorRT/TensorRT/tools/perf/utils.py	2024-08-21 00:33:32.549136+00:00
@@ -28,19 +28,16 @@
}


def load_hf_model(model_name_hf):
    print("Loading user-specified HF model: ", model_name_hf)
-    model_hf = (
-        AutoModelForCausalLM.from_pretrained(
-            model_name_hf,
-            trust_remote_code=True,
-            use_cache=False,
-            attn_implementation="eager",
-        )
-        .eval()
-    )
+    model_hf = AutoModelForCausalLM.from_pretrained(
+        model_name_hf,
+        trust_remote_code=True,
+        use_cache=False,
+        attn_implementation="eager",
+    ).eval()

    return {"model": model_hf}


class ModelStorage:

@peri044 peri044 requested a review from zewenli98 August 21, 2024 00:41
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to Python style guidelines:

--- /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_DryRunTracker.py	2024-08-21 00:41:21.928115+00:00
+++ /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_DryRunTracker.py	2024-08-21 00:41:47.424333+00:00
@@ -224,20 +224,22 @@
    """Format shapes and dtypes of input Tensors into a readable string"""

    def input_formatter_helper(shapes: Any, dtypes: Any) -> str:
        """Helper for input formatter"""
        # Base case 1 - single static/dynamic shape, single dtype
-        if isinstance(shapes, tuple) and all(isinstance(elt, (int, tuple)) for elt in shapes):
+        if isinstance(shapes, tuple) and all(
+            isinstance(elt, (int, tuple)) for elt in shapes
+        ):
            input_shape_string = "Tensor: ("
            for elt in shapes:
                if isinstance(elt, tuple):
-                    input_shape_string+= f"(min={elt[0]}, max={elt[1]}), "
+                    input_shape_string += f"(min={elt[0]}, max={elt[1]}), "
                else:
-                    input_shape_string+= f"{elt}, "
+                    input_shape_string += f"{elt}, "
            input_shape_string = input_shape_string[:-2] + ")" + f"@{str(dtypes)[6:]}, "
            return input_shape_string
-        
+
        # Base case 2 - dynamic shape, single dtype
        elif (
            isinstance(shapes, dict)
            and len(shapes) == 3
            and all(
--- /home/runner/work/TensorRT/TensorRT/tools/perf/utils.py	2024-08-21 00:41:21.964116+00:00
+++ /home/runner/work/TensorRT/TensorRT/tools/perf/utils.py	2024-08-21 00:41:52.826949+00:00
@@ -28,19 +28,16 @@
}


def load_hf_model(model_name_hf):
    print("Loading user-specified HF model: ", model_name_hf)
-    model_hf = (
-        AutoModelForCausalLM.from_pretrained(
-            model_name_hf,
-            trust_remote_code=True,
-            use_cache=False,
-            attn_implementation="eager",
-        )
-        .eval()
-    )
+    model_hf = AutoModelForCausalLM.from_pretrained(
+        model_name_hf,
+        trust_remote_code=True,
+        use_cache=False,
+        attn_implementation="eager",
+    ).eval()

    return {"model": model_hf}


class ModelStorage:

github-actions[bot]

This comment was marked as resolved.

Copy link
Collaborator

@narendasan narendasan left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

github-actions[bot]

This comment was marked as resolved.

github-actions[bot]

This comment was marked as resolved.

@github-actions github-actions bot added the component: tests Issues re: Tests label Aug 28, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
cla signed component: api [Python] Issues re: Python API component: conversion Issues re: Conversion stage component: converters Issues re: Specific op converters component: dynamo Issues relating to the `torch.compile` or `torch._dynamo.export` paths component: lowering Issues re: The lowering / preprocessing passes component: tests Issues re: Tests
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants