Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 23 additions & 0 deletions py/torch_tensorrt/dynamo/conversion/aten_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -2626,3 +2626,26 @@ def aten_ops_pdist(
args[0],
args_bounds_check(args, 1, 2),
)


@dynamo_tensorrt_converter(torch.ops.aten.flip.default)
@enforce_tensor_types(
{
0: (TRTTensor,),
}
)
def aten_ops_flip(
ctx: ConversionContext,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
return impl.slice.flip(
ctx,
target,
SourceIR.ATEN,
name,
args[0],
args[1],
)
34 changes: 34 additions & 0 deletions py/torch_tensorrt/dynamo/conversion/impl/slice/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -225,3 +225,37 @@ def tile(
layer.mode = trt.SampleMode.WRAP
set_layer_name(layer, target, name)
return layer.get_output(0)


def flip(
ctx: ConversionContext,
target: Target,
source_ir: Optional[SourceIR],
name: str,
input: TRTTensor,
dims: Sequence[int],
) -> TRTTensor:
start_slice = []
output_shape = list(input.shape)
stride_slice = []

shape = input.shape
rank = len(shape)
dims = get_positive_dim(dims, rank)

for i in range(rank):
if i in dims:
start_slice.append(shape[i] - 1)
stride_slice.append(-1)
else:
start_slice.append(0)
stride_slice.append(1)

layer = ctx.net.add_slice(
input,
start=start_slice,
shape=output_shape,
stride=stride_slice,
)
set_layer_name(layer, target, name, source_ir)
return layer.get_output(0)
37 changes: 37 additions & 0 deletions tests/py/dynamo/conversion/test_flip_aten.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
import torch
import torch.nn as nn
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests

from .harness import DispatchTestCase


class TestFlipConverter(DispatchTestCase):
@parameterized.expand(
[
((3,), [0]),
((3,), [-1]),
((3,), []),
((3, 3), [0, 1]),
((3, 3), [-2, 1]),
((2, 3, 4), [0]),
((3, 3, 3), (0, 1)),
((2, 3, 4), [0, 1, 2]),
((2, 3, 4), [-3, -2, -1]),
((3, 3, 3, 3), [0]),
((2, 3, 4, 5), [0, 1, 2, 3]),
((2, 3, 4, 5), [-4, 1, -2, 3]),
((2, 3, 4, 5), []),
]
)
def test_flip(self, shape, dims):
class Flip(nn.Module):
def forward(self, x):
return torch.ops.aten.flip.default(x, dims)

inputs = [torch.randn(shape)]
self.run_test(Flip(), inputs)


if __name__ == "__main__":
run_tests()