Skip to content

Dynamo converter cat #2343

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Oct 6, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions py/torch_tensorrt/dynamo/conversion/aten_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,24 @@ def aten_ops_batch_norm(
)


@dynamo_tensorrt_converter(torch.ops.aten.cat.default)
def aten_ops_cat(
ctx: ConversionContext,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
return impl.cat.cat(
ctx,
target,
SourceIR.ATEN,
name,
input=args[0],
dim=args_bounds_check(args, 1, 0),
)


def embedding_param_validator(embedding_node: Node) -> bool:
scale_grad_by_freq = args_bounds_check(embedding_node.args, 3)
sparse = args_bounds_check(embedding_node.args, 4)
Expand Down
1 change: 1 addition & 0 deletions py/torch_tensorrt/dynamo/conversion/impl/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
activation,
attention,
cast,
cat,
condition,
conv,
deconv,
Expand Down
34 changes: 34 additions & 0 deletions py/torch_tensorrt/dynamo/conversion/impl/cat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
from typing import Dict, Optional, Sequence, Union

import numpy as np
import torch
from torch.fx.node import Target
from torch_tensorrt.dynamo._SourceIR import SourceIR
from torch_tensorrt.dynamo.conversion._ConversionContext import ConversionContext
from torch_tensorrt.dynamo.conversion.converter_utils import (
SourceIR,
get_positive_dim,
get_trt_tensor,
)
from torch_tensorrt.fx.converters.converter_utils import set_layer_name
from torch_tensorrt.fx.types import TRTNetwork, TRTTensor


def cat(
ctx: ConversionContext,
target: Target,
source_ir: Optional[SourceIR],
name: str,
input: Sequence[Union[TRTTensor, torch.Tensor, np.ndarray]],
dim: int,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
trt_inputs = []
for each_input in input:
if not isinstance(each_input, TRTTensor):
each_input = get_trt_tensor(ctx, each_input, name + "_tensor_{i}")
trt_inputs.append(each_input)
concat_layer = ctx.net.add_concatenation(trt_inputs)
dim = get_positive_dim(dim, len(input[0].shape))
concat_layer.axis = dim
set_layer_name(concat_layer, target, name + "_gather", source_ir)
return concat_layer.get_output(0)