Skip to content

feat: support type promotion in aten::cat converter #1911

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions core/conversion/converters/converter_util.h
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,8 @@ nvinfer1::ITensor* get_slice_size(

nvinfer1::ITensor* scalar_to_tensor(ConversionCtx* ctx, at::Scalar s);

nvinfer1::DataType promote_types(nvinfer1::DataType type_a, nvinfer1::DataType type_b);

} // namespace converters
} // namespace conversion
} // namespace core
Expand Down
12 changes: 12 additions & 0 deletions core/conversion/converters/impl/concat.cpp
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
#include "core/conversion/converters/converter_util.h"
#include "core/conversion/converters/converters.h"
#include "core/conversion/tensorcontainer/TensorContainer.h"
#include "core/util/prelude.h"
Expand Down Expand Up @@ -27,6 +28,17 @@ auto cat_registrations TORCHTRT_UNUSED = RegisterNodeConversionPatterns()
}
}

auto promo_dtype = tensors[0]->getType();
for(size_t idx = 1UL; idx < tensors.size(); ++idx){
promo_dtype = promote_types(promo_dtype, tensors[idx]->getType());
}

for(size_t idx = 0UL; idx < tensors.size(); ++idx){
if(tensors[idx]->getType() != promo_dtype){
tensors[idx] = castITensor(ctx, tensors[idx], promo_dtype, util::node_info(n) + "_cast_" + std::to_string(idx));
}
}

if (dim < 0) {
dim = tensors[0]->getDimensions().nbDims + dim;
}
Expand Down
79 changes: 79 additions & 0 deletions tests/core/conversion/converters/test_concat.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,85 @@ TEST(Converters, ATenCatPureTensorConvertsCorrectly) {
torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0].reshape_as(jit_results[0]), 2e-6));
}

TEST(Converters, ATenCatFloatIntConvertsCorrectly) {
const auto graph = R"IR(
graph(%0 : Tensor,
%1 : Tensor):
%2 : Tensor[] = prim::ListConstruct(%0, %1)
%3 : int = prim::Constant[value=0]()
%4 : Tensor = aten::cat(%2, %3)
return (%4))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

auto in1 = at::randint(1, 10, {5}, {at::kCUDA}).to(at::kFloat);
auto in2 = at::randint(1, 10, {5}, {at::kCUDA}).to(at::kInt);

auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in1, in2});

params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {in1, in2});

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenCatIntHalfIntHalfConvertsCorrectly) {
const auto graph = R"IR(
graph(%0 : Tensor,
%1 : Tensor,
%2 : Tensor,
%3 : Tensor):
%2 : Tensor[] = prim::ListConstruct(%0, %1, %2, %3)
%3 : int = prim::Constant[value=0]()
%4 : Tensor = aten::cat(%2, %3)
return (%4))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

auto in1 = at::randint(1, 10, {5}, {at::kCUDA}).to(at::kInt);
auto in2 = at::randint(1, 10, {5}, {at::kCUDA}).to(at::kHalf);
auto in3 = at::randint(1, 10, {5}, {at::kCUDA}).to(at::kInt);
auto in4 = at::randint(1, 10, {5}, {at::kCUDA}).to(at::kHalf);

auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in1, in2, in3, in4});

params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results =
torch_tensorrt::tests::util::RunGraphEngine(g, params, {in1, in2, in3, in4}, nvinfer1::DataType::kHALF);

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenCatHalfIntFloatConvertsCorrectly) {
const auto graph = R"IR(
graph(%0 : Tensor,
%1 : Tensor,
%2 : Tensor):
%2 : Tensor[] = prim::ListConstruct(%0, %1, %2)
%3 : int = prim::Constant[value=0]()
%4 : Tensor = aten::cat(%2, %3)
return (%4))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

auto in1 = at::randint(1, 10, {5}, {at::kCUDA}).to(at::kInt);
auto in2 = at::randint(1, 10, {5}, {at::kCUDA}).to(at::kHalf);
auto in3 = at::randint(1, 10, {5}, {at::kCUDA}).to(at::kFloat);

auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in1, in2, in3});

params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {in1, in2, in3});

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenCatDiffTensorConvertsCorrectly) {
const auto graph = R"IR(
graph(%0 : Tensor,
Expand Down