Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make Predictive work with the SplitReparam reparameterizer [bugfix] #3388

Merged
merged 7 commits into from
Aug 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 6 additions & 2 deletions pyro/infer/predictive.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@

import pyro
import pyro.poutine as poutine
from pyro.infer.autoguide.initialization import InitMessenger, init_to_sample
from pyro.infer.importance import LogWeightsMixin
from pyro.infer.util import CloneMixin, plate_log_prob_sum
from pyro.poutine.trace_struct import Trace
Expand Down Expand Up @@ -86,12 +87,15 @@ def _predictive(
mask=True,
):
model = torch.no_grad()(poutine.mask(model, mask=False) if mask else model)
max_plate_nesting = _guess_max_plate_nesting(model, model_args, model_kwargs)
initailized_model = InitMessenger(init_to_sample)(model)
max_plate_nesting = _guess_max_plate_nesting(
initailized_model, model_args, model_kwargs
)
vectorize = pyro.plate(
_predictive_vectorize_plate_name, num_samples, dim=-max_plate_nesting - 1
)
model_trace = prune_subsample_sites(
poutine.trace(model).get_trace(*model_args, **model_kwargs)
poutine.trace(initailized_model).get_trace(*model_args, **model_kwargs)
)
reshaped_samples = {}

Expand Down
77 changes: 56 additions & 21 deletions tests/infer/reparam/test_split.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,7 @@

from .util import check_init_reparam


@pytest.mark.parametrize(
event_shape_splits_dim = pytest.mark.parametrize(
"event_shape,splits,dim",
[
((6,), [2, 1, 3], -1),
Expand All @@ -31,7 +30,13 @@
],
ids=str,
)
@pytest.mark.parametrize("batch_shape", [(), (4,), (3, 2)], ids=str)


batch_shape = pytest.mark.parametrize("batch_shape", [(), (4,), (3, 2)], ids=str)


@event_shape_splits_dim
@batch_shape
def test_normal(batch_shape, event_shape, splits, dim):
shape = batch_shape + event_shape
loc = torch.empty(shape).uniform_(-1.0, 1.0).requires_grad_()
Expand Down Expand Up @@ -72,24 +77,8 @@ def model():
assert_close(actual_grads, expected_grads)


@pytest.mark.parametrize(
"event_shape,splits,dim",
[
((6,), [2, 1, 3], -1),
(
(
2,
5,
),
[2, 3],
-1,
),
((4, 2), [1, 3], -2),
((2, 3, 1), [1, 2], -2),
],
ids=str,
)
@pytest.mark.parametrize("batch_shape", [(), (4,), (3, 2)], ids=str)
@event_shape_splits_dim
@batch_shape
def test_init(batch_shape, event_shape, splits, dim):
shape = batch_shape + event_shape
loc = torch.empty(shape).uniform_(-1.0, 1.0)
Expand All @@ -100,3 +89,49 @@ def model():
return pyro.sample("x", dist.Normal(loc, scale).to_event(len(event_shape)))

check_init_reparam(model, SplitReparam(splits, dim))


@event_shape_splits_dim
@batch_shape
def test_predictive(batch_shape, event_shape, splits, dim):
shape = batch_shape + event_shape
loc = torch.empty(shape).uniform_(-1.0, 1.0)
scale = torch.empty(shape).uniform_(0.5, 1.5)

def model():
with pyro.plate_stack("plates", batch_shape):
pyro.sample("x", dist.Normal(loc, scale).to_event(len(event_shape)))

# Reparametrize model
rep = SplitReparam(splits, dim)
reparam_model = poutine.reparam(model, {"x": rep})

# Fit guide to reparametrized model
guide = pyro.infer.autoguide.guides.AutoMultivariateNormal(reparam_model)
optimizer = pyro.optim.Adam(dict(lr=0.01))
loss = pyro.infer.JitTrace_ELBO(
num_particles=20, vectorize_particles=True, ignore_jit_warnings=True
)
svi = pyro.infer.SVI(reparam_model, guide, optimizer, loss)
for count in range(1001):
loss = svi.step()
if count % 100 == 0:
print(f"iteration {count} loss = {loss}")

# Sample from model using the guide
num_samples = 100000
parallel = True
sites = ["x_split_{}".format(i) for i in range(len(splits))]
values = pyro.infer.Predictive(
reparam_model,
guide=guide,
num_samples=num_samples,
parallel=parallel,
return_sites=sites,
)()

# Verify sampling
mean = torch.cat([values[site].mean(0) for site in sites], dim=dim)
std = torch.cat([values[site].std(0) for site in sites], dim=dim)
assert_close(mean, loc, atol=0.1)
assert_close(std, scale, rtol=0.1)
Loading