Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Type Hints] datasets.ModelNet #5701

Merged
merged 10 commits into from
Oct 15, 2022
24 changes: 17 additions & 7 deletions torch_geometric/datasets/modelnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,17 @@
import os
import os.path as osp
import shutil
from typing import Callable, Dict, List, Optional, Tuple

import torch

from torch_geometric.data import InMemoryDataset, download_url, extract_zip
from torch import Tensor

from torch_geometric.data import (
Data,
InMemoryDataset,
download_url,
extract_zip,
)
from torch_geometric.io import read_off


Expand Down Expand Up @@ -51,23 +58,26 @@ class ModelNet(InMemoryDataset):
'40': 'http://modelnet.cs.princeton.edu/ModelNet40.zip'
}

def __init__(self, root, name='10', train=True, transform=None,
pre_transform=None, pre_filter=None):
def __init__(self, root: str, name: Optional[str] = '10',
train: Optional[bool] = True,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
pre_filter: Optional[Callable] = None):
assert name in ['10', '40']
self.name = name
super().__init__(root, transform, pre_transform, pre_filter)
path = self.processed_paths[0] if train else self.processed_paths[1]
self.data, self.slices = torch.load(path)

@property
def raw_file_names(self):
def raw_file_names(self) -> List[str]:
return [
'bathtub', 'bed', 'chair', 'desk', 'dresser', 'monitor',
'night_stand', 'sofa', 'table', 'toilet'
]

@property
def processed_file_names(self):
def processed_file_names(self) -> List[str]:
return ['training.pt', 'test.pt']

def download(self):
Expand All @@ -87,7 +97,7 @@ def process(self):
torch.save(self.process_set('train'), self.processed_paths[0])
torch.save(self.process_set('test'), self.processed_paths[1])

def process_set(self, dataset):
def process_set(self, dataset) -> Tuple[Data, Dict[str, Tensor]]:
categories = glob.glob(osp.join(self.raw_dir, '*', ''))
categories = sorted([x.split(os.sep)[-2] for x in categories])

Expand Down