Description
What happened?
I am trying to select a time period after converting the calendar to noleap
and I receive the following error:
TypeError: '<' not supported between instances of 'cftime._cftime.DatetimeNoLeap' and 'str'
What did you expect to happen?
I expected the slicing to work as normal.
Minimal Complete Verifiable Example
import xarray as xr
import pandas as pd
import numpy as np
time=xr.cftime_range('2000-01-01','2006-01-01', freq='D', calendar='noleap')
temperature = np.ones(len(time))
da = xr.DataArray(
data=temperature,
dims=["time"],
coords=dict(time=time,),
)
out=da.sel(time=slice('2001','2002')) # works if array is built with cftime
da1=da.convert_calendar('noleap')
out1=da1.sel(time=slice('2001','2002')) # works if array is built with cftime and converted
time=pd.date_range('2000-01-01','2006-01-01', freq='D',)
temperature = np.ones(len(time))
da2 = xr.DataArray(
data=temperature,
dims=["time"],
coords=dict(time=time,),
)
out2=da2.sel(time=slice('2001','2002')) # # works if array is built with pandas time
da3=da2.convert_calendar('noleap')
out3=da3.sel(time=slice('2001','2002')) # fails if array is built with pandas time and convert to noleap
MVCE confirmation
- Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
- Complete example — the example is self-contained, including all data and the text of any traceback.
- Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
- New issue — a search of GitHub Issues suggests this is not a duplicate.
- Recent environment — the issue occurs with the latest version of xarray and its dependencies.
Relevant log output
KeyError Traceback (most recent call last)
File /srv/conda/envs/notebook/lib/python3.10/site-packages/pandas/core/indexes/base.py:3805, in Index.get_loc(self, key)
3804 try:
-> 3805 return self._engine.get_loc(casted_key)
3806 except KeyError as err:
File index.pyx:167, in pandas._libs.index.IndexEngine.get_loc()
File index.pyx:196, in pandas._libs.index.IndexEngine.get_loc()
File pandas/_libs/hashtable_class_helper.pxi:7081, in pandas._libs.hashtable.PyObjectHashTable.get_item()
File pandas/_libs/hashtable_class_helper.pxi:7089, in pandas._libs.hashtable.PyObjectHashTable.get_item()
KeyError: '2001'
The above exception was the direct cause of the following exception:
KeyError Traceback (most recent call last)
File /srv/conda/envs/notebook/lib/python3.10/site-packages/pandas/core/indexes/base.py:6798, in Index.get_slice_bound(self, label, side)
6797 try:
-> 6798 slc = self.get_loc(label)
6799 except KeyError as err:
File /srv/conda/envs/notebook/lib/python3.10/site-packages/pandas/core/indexes/base.py:3812, in Index.get_loc(self, key)
3811 raise InvalidIndexError(key)
-> 3812 raise KeyError(key) from err
3813 except TypeError:
3814 # If we have a listlike key, _check_indexing_error will raise
3815 # InvalidIndexError. Otherwise we fall through and re-raise
3816 # the TypeError.
KeyError: '2001'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
Cell In[1], line 24
22 out2=da2.sel(time=slice('2001','2002')) # # works if array is built with pandas time
23 da3=da2.convert_calendar('noleap')
---> 24 out3=da3.sel(time=slice('2001','2002')) # fails if array is built with pandas time and convert to noleap
File /srv/conda/envs/notebook/lib/python3.10/site-packages/xarray/core/dataarray.py:1644, in DataArray.sel(self, indexers, method, tolerance, drop, **indexers_kwargs)
1528 def sel(
1529 self,
1530 indexers: Mapping[Any, Any] | None = None,
(...)
1534 **indexers_kwargs: Any,
1535 ) -> Self:
1536 """Return a new DataArray whose data is given by selecting index
1537 labels along the specified dimension(s).
1538
(...)
1642 Dimensions without coordinates: points
1643 """
-> 1644 ds = self._to_temp_dataset().sel(
1645 indexers=indexers,
1646 drop=drop,
1647 method=method,
1648 tolerance=tolerance,
1649 **indexers_kwargs,
1650 )
1651 return self._from_temp_dataset(ds)
File /srv/conda/envs/notebook/lib/python3.10/site-packages/xarray/core/dataset.py:3126, in Dataset.sel(self, indexers, method, tolerance, drop, **indexers_kwargs)
3058 """Returns a new dataset with each array indexed by tick labels
3059 along the specified dimension(s).
3060
(...)
3123
3124 """
3125 indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "sel")
-> 3126 query_results = map_index_queries(
3127 self, indexers=indexers, method=method, tolerance=tolerance
3128 )
3130 if drop:
3131 no_scalar_variables = {}
File /srv/conda/envs/notebook/lib/python3.10/site-packages/xarray/core/indexing.py:192, in map_index_queries(obj, indexers, method, tolerance, **indexers_kwargs)
190 results.append(IndexSelResult(labels))
191 else:
--> 192 results.append(index.sel(labels, **options))
194 merged = merge_sel_results(results)
196 # drop dimension coordinates found in dimension indexers
197 # (also drop multi-index if any)
198 # (.sel() already ensures alignment)
File /srv/conda/envs/notebook/lib/python3.10/site-packages/xarray/core/indexes.py:758, in PandasIndex.sel(self, labels, method, tolerance)
755 coord_name, label = next(iter(labels.items()))
757 if isinstance(label, slice):
--> 758 indexer = _query_slice(self.index, label, coord_name, method, tolerance)
759 elif is_dict_like(label):
760 raise ValueError(
761 "cannot use a dict-like object for selection on "
762 "a dimension that does not have a MultiIndex"
763 )
File /srv/conda/envs/notebook/lib/python3.10/site-packages/xarray/core/indexes.py:497, in _query_slice(index, label, coord_name, method, tolerance)
493 if method is not None or tolerance is not None:
494 raise NotImplementedError(
495 "cannot use ``method`` argument if any indexers are slice objects"
496 )
--> 497 indexer = index.slice_indexer(
498 _sanitize_slice_element(label.start),
499 _sanitize_slice_element(label.stop),
500 _sanitize_slice_element(label.step),
501 )
502 if not isinstance(indexer, slice):
503 # unlike pandas, in xarray we never want to silently convert a
504 # slice indexer into an array indexer
505 raise KeyError(
506 "cannot represent labeled-based slice indexer for coordinate "
507 f"{coord_name!r} with a slice over integer positions; the index is "
508 "unsorted or non-unique"
509 )
File /srv/conda/envs/notebook/lib/python3.10/site-packages/pandas/core/indexes/base.py:6662, in Index.slice_indexer(self, start, end, step)
6618 def slice_indexer(
6619 self,
6620 start: Hashable | None = None,
6621 end: Hashable | None = None,
6622 step: int | None = None,
6623 ) -> slice:
6624 """
6625 Compute the slice indexer for input labels and step.
6626
(...)
6660 slice(1, 3, None)
6661 """
-> 6662 start_slice, end_slice = self.slice_locs(start, end, step=step)
6664 # return a slice
6665 if not is_scalar(start_slice):
File /srv/conda/envs/notebook/lib/python3.10/site-packages/pandas/core/indexes/base.py:6879, in Index.slice_locs(self, start, end, step)
6877 start_slice = None
6878 if start is not None:
-> 6879 start_slice = self.get_slice_bound(start, "left")
6880 if start_slice is None:
6881 start_slice = 0
File /srv/conda/envs/notebook/lib/python3.10/site-packages/pandas/core/indexes/base.py:6801, in Index.get_slice_bound(self, label, side)
6799 except KeyError as err:
6800 try:
-> 6801 return self._searchsorted_monotonic(label, side)
6802 except ValueError:
6803 # raise the original KeyError
6804 raise err
File /srv/conda/envs/notebook/lib/python3.10/site-packages/pandas/core/indexes/base.py:6733, in Index._searchsorted_monotonic(self, label, side)
6731 def _searchsorted_monotonic(self, label, side: Literal["left", "right"] = "left"):
6732 if self.is_monotonic_increasing:
-> 6733 return self.searchsorted(label, side=side)
6734 elif self.is_monotonic_decreasing:
6735 # np.searchsorted expects ascending sort order, have to reverse
6736 # everything for it to work (element ordering, search side and
6737 # resulting value).
6738 pos = self[::-1].searchsorted(
6739 label, side="right" if side == "left" else "left"
6740 )
File /srv/conda/envs/notebook/lib/python3.10/site-packages/pandas/core/base.py:1352, in IndexOpsMixin.searchsorted(self, value, side, sorter)
1348 if not isinstance(values, np.ndarray):
1349 # Going through EA.searchsorted directly improves performance GH#38083
1350 return values.searchsorted(value, side=side, sorter=sorter)
-> 1352 return algorithms.searchsorted(
1353 values,
1354 value,
1355 side=side,
1356 sorter=sorter,
1357 )
File /srv/conda/envs/notebook/lib/python3.10/site-packages/pandas/core/algorithms.py:1329, in searchsorted(arr, value, side, sorter)
1325 arr = ensure_wrapped_if_datetimelike(arr)
1327 # Argument 1 to "searchsorted" of "ndarray" has incompatible type
1328 # "Union[NumpyValueArrayLike, ExtensionArray]"; expected "NumpyValueArrayLike"
-> 1329 return arr.searchsorted(value, side=side, sorter=sorter)
TypeError: '<' not supported between instances of 'cftime._cftime.DatetimeNoLeap' and 'str'
Anything else we need to know?
It was working with version 2024.05.0
Environment
INSTALLED VERSIONS
commit: None
python: 3.11.5 | packaged by conda-forge | (main, Aug 27 2023, 03:34:09) [GCC 12.3.0]
python-bits: 64
OS: Linux
OS-release: 3.10.0-1160.105.1.el7.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_CA.UTF-8
LOCALE: ('fr_CA', 'UTF-8')
libhdf5: 1.14.1
libnetcdf: 4.9.2
xarray: 2024.6.0
pandas: 2.2.1
numpy: 1.24.4
scipy: 1.11.2
netCDF4: 1.6.4
pydap: None
h5netcdf: 1.2.0
h5py: 3.9.0
zarr: 2.16.1
cftime: 1.6.3
nc_time_axis: 1.4.1
iris: None
bottleneck: 1.3.7
dask: 2023.9.2
distributed: 2023.9.2
matplotlib: 3.8.0
cartopy: 0.22.0
seaborn: 0.13.1
numbagg: None
fsspec: 2023.9.2
cupy: None
pint: 0.22
sparse: 0.14.0
flox: 0.7.2
numpy_groupies: 0.10.1
setuptools: 68.2.2
pip: 23.2.1
conda: installed
pytest: 7.4.2
mypy: None
IPython: 8.15.0
sphinx: 7.2.6