Skip to content

xarray.DataArray.stack load data into memory #4113

Closed
@Paul-Aime

Description

@Paul-Aime

Stacking is loading the data into memory, which is unexpected, or at least undocumented, afaik.

MCVE Code Sample

import os
import psutil
import numpy as np
import xarray as xr

def main():

    xr.DataArray(
        np.random.randn(1024, 1024, 100),
        dims=("x", "y", "z"),
    ).to_netcdf("da.nc")

    da = xr.open_dataarray("da.nc")
    print(f" da: {mb(da.nbytes)} MB")
    print_ram_state()

    mda = da.stack(px=("x", "y"))
    print_ram_state()

def print_ram_state():
    # https://stackoverflow.com/a/21632554
    process = psutil.Process(os.getpid())
    ram_state = process.memory_info().rss
    print(f"RAM: {mb(ram_state) :.2f} MB")

def mb(nbytes):
    return nbytes / (1024 * 1024)

if __name__ == "__main__":
    main()

Problem Description

Using xarray.DataArray.stack method is loading the data into memory, which is unexpected behavior, or at least undocumented afaik.

Versions

Output of xr.show_versions()

INSTALLED VERSIONS

commit: None
python: 3.7.6 | packaged by conda-forge | (default, Mar 23 2020, 23:03:20)
[GCC 7.3.0]
python-bits: 64
OS: Linux
OS-release: 5.3.0-53-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
libhdf5: 1.10.5
libnetcdf: None

xarray: 0.15.1
pandas: 1.0.3
numpy: 1.17.5
scipy: 1.4.1
netCDF4: None
pydap: None
h5netcdf: None
h5py: 2.10.0
Nio: None
zarr: None
cftime: None
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: 1.3.2
dask: 2.16.0
distributed: 2.16.0
matplotlib: 3.2.1
cartopy: None
seaborn: 0.10.1
numbagg: None
setuptools: 46.4.0.post20200518
pip: 20.1.1
conda: 4.8.3
pytest: 5.4.2
IPython: 7.14.0
sphinx: 3.0.4

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions