Closed
Description
Merging two datasets using xr.merge converts all the variables to float64 type.
MCVE Code Sample
import numpy as np
import xarray as xr
x = np.arange(0,10)
y = np.arange(0,10)
time = [0,1]
data = np.zeros((10,10), dtype=bool)
dataArray1 = xr.DataArray([data], coords={'time': [time[0]], 'y': y, 'x': x},
dims=['time', 'y', 'x'])
dataArray2 = xr.DataArray([data], coords={'time': [time[1]], 'y': y, 'x': x},
dims=['time', 'y', 'x'])
dataArray1 = dataArray1.to_dataset(name='data')
dataArray2 = dataArray2.to_dataset(name='data')
xr.merge([dataArray1,dataArray2])
Current Output
<xarray.Dataset>
Dimensions: (time: 2, x: 10, y: 10)
Coordinates:
* time (time) int64 0 1
* y (y) int64 0 1 2 3 4 5 6 7 8 9
* x (x) int64 0 1 2 3 4 5 6 7 8 9
Data variables:
data (time, y, x) float64 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0
Expected Output
<xarray.Dataset>
Dimensions: (time: 2, x: 10, y: 10)
Coordinates:
* time (time) int64 0 1
* y (y) int64 0 1 2 3 4 5 6 7 8 9
* x (x) int64 0 1 2 3 4 5 6 7 8 9
Data variables:
data (time, y, x) bool False False False False False ... False False False False False
Problem Description
The merge function should not convert data types into float64.
In this case is increasing the memory usage compared to what is expected.
Versions
INSTALLED VERSIONS
------------------ commit: None python: 3.6.8 (default, May 7 2019, 14:58:50) [GCC 8.3.0] python-bits: 64 OS: Linux OS-release: 4.15.0-88-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: C.UTF-8 LOCALE: en_US.UTF-8 libhdf5: None libnetcdf: Nonexarray: 0.15.1
pandas: 1.0.3
numpy: 1.18.2
scipy: None
netCDF4: None
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: None
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: None
dask: None
distributed: None
matplotlib: 3.2.0
cartopy: None
seaborn: None
numbagg: None
setuptools: 46.1.3
pip: 9.0.1
conda: None
pytest: None
IPython: 7.13.0
sphinx: 2.4.3
Metadata
Metadata
Assignees
Labels
No labels