Description
Hello,
I would like an option in da.interp()
that instead of returning NaNs during extrapolation returns the data corresponding to the end of the breakpoint data set range.
One way to do this is to limit the new coordinates to the array coordinates minimum and maximum value, I did a simple example with this solution down below.
I think this is a rather safe way as we are just modifying the inputs to all the various interpolation classes that xarray is using at the moment.
But it does look a little weird when printing the extrapolated value, the coordinates shows the limited value instead of the requested coordinates. Maybe this can be handled elegantly somewhere in the source code?
MATLAB uses this quite frequently in their interpolation functions:
- https://mathworks.com/help/simulink/ug/methods-for-estimating-missing-points.html
- https://mathworks.com/help/simulink/slref/2dlookuptable.html
MCVE Code Sample
import numpy as np
import xarray as xr
def interp(da, coords, extrapolation='clip'):
"""
Linear interpolation that clips the inputs to the coords min and max value.
Parameters
----------
da : DataArray
DataArray to interpolate.
coords : dict
Coordinates for the interpolated value.
"""
if extrapolation == 'clip':
for k, v in da.coords.items():
coords[k] = np.maximum(coords[k], np.min(v.values))
coords[k] = np.minimum(coords[k], np.max(v.values))
return da.interp(coords)
# Create coordinates:
x = np.linspace(1000, 6000, 4)
y = np.linspace(100, 1200, 3)
# Create data:
X = np.meshgrid(*[x, y], indexing='ij')
data = X[0] * X[1]
# Create DataArray:
da = xr.DataArray(data=data, coords=[('x', x), ('y', y)], name='data')
# Attempt to extrapolate:
datai = interp(da, {'x': 7000, 'y': 375})
Expected Output
print(datai)
<xarray.DataArray 'data' ()>
array(2250000.)
Coordinates:
x float64 6e+03
y float64 375.0
Versions
Output of `xr.show_versions()`
INSTALLED VERSIONS
commit: None
python: 3.7.7 (default, Mar 23 2020, 23:19:08) [MSC v.1916 64 bit (AMD64)]
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
byteorder: little
LC_ALL: None
LANG: en
LOCALE: None.None
libhdf5: 1.10.4
libnetcdf: None
xarray: 0.15.0
pandas: 1.0.3
numpy: 1.18.1
scipy: 1.4.1
netCDF4: None
pydap: None
h5netcdf: None
h5py: 2.10.0
Nio: None
zarr: None
cftime: None
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: 1.3.2
dask: 2.13.0
distributed: 2.13.0
matplotlib: 3.1.3
cartopy: None
seaborn: 0.10.0
numbagg: None
setuptools: 46.1.3.post20200330
pip: 20.0.2
conda: 4.8.3
pytest: 5.4.1
IPython: 7.13.0
sphinx: 2.4.4