Description
Submitting Author: Syed Ali Mohsin Bukhari (@syedalimohsinbukhari)
All current maintainers: (@syedalimohsinbukhari)
Package Name: pymultifit
One-Line Description of Package: A python library for fitting data with multiple models.
Repository Link: https://github.com/syedalimohsinbukhari/pyMultiFit
Version submitted: v1.0.3 v1.0.6
EiC: @coatless
Editor: @Batalex
Reviewer 1: @g4brielvs
Reviewer 2: @KristinaGagalova
Archive: TBD
JOSS DOI: TBD
Version accepted: TBD
Date accepted (month/day/year): TBD
Code of Conduct & Commitment to Maintain Package
- I agree to abide by pyOpenSci's Code of Conduct during the review process and in maintaining my package after should it be accepted.
- I have read and will commit to package maintenance after the review as per the pyOpenSci Policies Guidelines.
Description
- Include a brief paragraph describing what your package does:
pymultifit
is built primarily to solve one problem, to fit multiple models (and mixture models) to a given data. Be it multiple Gaussian
, Laplacian
, or a mixture of such models, this package aims to deal with multi-model data fitting. The package also provides easy-to-use BaseDistribution
and BaseFitter
classes for respective user-defined functions.
Scope
-
Please indicate which category or categories.
Check out our package scope page to learn more about our
scope. (If you are unsure of which category you fit, we suggest you make a pre-submission inquiry):- Data retrieval
- Data extraction
- Data processing/munging
- Data deposition
- Data validation and testing
- Data visualization1
- Workflow automation
- Citation management and bibliometrics
- Scientific software wrappers
- Database interoperability
Domain Specific
- Geospatial
- Education
Community Partnerships
If your package is associated with an
existing community please check below:
- Astropy:My package adheres to Astropy community standards
- Pangeo: My package adheres to the Pangeo standards listed in the pyOpenSci peer review guidebook
-
For all submissions, explain how and why the package falls under the categories you indicated above. In your explanation, please address the following points (briefly, 1-2 sentences for each):
- Who is the target audience and what are scientific applications of this package?
Researchers, data scientists, and statisticians who work with datasets requiring multi-model fitting for robust analysis and modeling.
- Are there other Python packages that accomplish the same thing? If so, how does yours differ?
Apart from scipy, lmfit, and scikit-learn the general purpose scientific packages, there exists PyAutoFit, a Python-based probabilistic programming language built on Bayesian inference. Another notable library is Mixture-Models, which specializes in advanced optimization techniques for fitting various families of mixture models, including Gaussian mixture models and their variants. Both libraries are powerful tools for specific use cases, and I recently came to know about them during my search of existing options.
While these libraries offer robust solutions for hierarchical modeling (PyAutoFit) or a diverse array of pre-defined mixture models (Mixture-Models), pyMultiFit distinguishes itself through its simplicity of use and its focus on simplicity of use. Specifically, it is designed to provide a lightweight and user-friendly framework for fitting multi-model data, including custom mixture models (for example, gaussian + laplace + line). pymultifit also provides easy-to-use base classes that can be modified for any distribution/fitter purposes.
One of the more prominent features of pyMultiFit is the BaseFitter template class that provides custom fitting to any definable function with minimal boilerplate code. All the plotting and boundary functionalities are handled inside the template class so that the user can focus solely on running through multiple models quickly without thinking about how to manage multiple models of the same type or even of different types.
Additionally, the generators template function provides the user with an N-model data generator function with added noise capability to mimic real-life scenarios of whatever distribution the user might want.
-
If you made a pre-submission enquiry, please paste the link to the corresponding issue, forum post, or other discussion, or
@tag
the editor you contacted:
Technical checks
For details about the pyOpenSci packaging requirements, see our packaging guide. Confirm each of the following by checking the box. This package:
- does not violate the Terms of Service of any service it interacts with.
- uses an OSI approved license.
- contains a README with instructions for installing the development version.
- includes documentation with examples for all functions.
- contains a tutorial with examples of its essential functions and uses.
- has a test suite.
- has continuous integration setup, such as GitHub Actions CircleCI, and/or others.
Publication Options
- Do you wish to automatically submit to the Journal of Open Source Software? If so:
JOSS Checks
- The package has an obvious research application according to JOSS's definition in their submission requirements. Be aware that completing the pyOpenSci review process does not guarantee acceptance to JOSS. Be sure to read their submission requirements (linked above) if you are interested in submitting to JOSS.
- The package is not a "minor utility" as defined by JOSS's submission requirements: "Minor ‘utility’ packages, including ‘thin’ API clients, are not acceptable." pyOpenSci welcomes these packages under "Data Retrieval", but JOSS has slightly different criteria.
- The package contains a
paper.md
matching JOSS's requirements with a high-level description in the package root or ininst/
. - The package is deposited in a long-term repository with the DOI:
Note: JOSS accepts our review as theirs. You will NOT need to go through another full review. JOSS will only review your paper.md file. Be sure to link to this pyOpenSci issue when a JOSS issue is opened for your package. Also be sure to tell the JOSS editor that this is a pyOpenSci reviewed package once you reach this step.
Are you OK with Reviewers Submitting Issues and/or pull requests to your Repo Directly?
This option will allow reviewers to open smaller issues that can then be linked to PR's rather than submitting a more dense text based review. It will also allow you to demonstrate addressing the issue via PR links.
- Yes I am OK with reviewers submitting requested changes as issues to my repo. Reviewers will then link to the issues in their submitted review.
Confirm each of the following by checking the box.
- I have read the author guide.
- I expect to maintain this package for at least 2 years and can help find a replacement for the maintainer (team) if needed.
Please fill out our survey
- Last but not least please fill out our pre-review survey. This helps us track
submission and improve our peer review process. We will also ask our reviewers
and editors to fill this out.
P.S. Have feedback/comments about our review process? Leave a comment here
Editor and Review Templates
The editor template can be found here.
The review template can be found here.
Footnotes
-
Please fill out a pre-submission inquiry before submitting a data visualization package. ↩
Metadata
Metadata
Assignees
Type
Projects
Status