A simplified SQLModel-based ORM for async database operations in Python. async-easy-model provides a clean, intuitive interface for common database operations while leveraging the power of SQLModel and SQLAlchemy.
- 🚀 Easy-to-use async database operations with standardized methods
- 🔄 Intuitive APIs with sensible defaults for rapid development
- 📊 Dictionary-based CRUD operations (select, insert, update, delete)
- đź”— Enhanced relationship handling with eager loading and nested operations
- 🔍 Powerful query methods with flexible ordering support
- ⚙️ Automatic relationship detection and bidirectional setup
- 📱 Support for PostgreSQL, SQLite, and MySQL databases
- 🛠️ Built on top of SQLModel and SQLAlchemy for robust performance
- 📝 Type hints for better IDE support
- đź•’ Automatic
id,created_atandupdated_atfields provided by default - ⏰ PostgreSQL DateTime Compatibility: Automatic timezone-aware to timezone-naive datetime conversion for PostgreSQL TIMESTAMP WITHOUT TIME ZONE columns
- 🔄 Automatic schema migrations for evolving database models
- 📊 Visualization of database schema using Mermaid ER diagrams
- đź“‹ JSON Column Support: Native support for JSON columns with proper serialization in migrations
pip install async-easy-modelfrom async_easy_model import EasyModel, init_db, db_config, Field
from typing import Optional
from datetime import datetime
# Configure your database
db_config.configure_sqlite("database.db")
# Define your model
class User(EasyModel, table=True):
#no need to specify id, created_at or updated_at since EasyModel provides them by default
username: str = Field(unique=True)
email: str
# Initialize your database
async def setup():
await init_db()
# Use it in your async code
async def main():
await setup()
# Create a new user
user = await User.insert({
"username": "john_doe",
"email": "john@example.com"
})
# Get user ID
print(f"New user id: {user.id}")First, let's define some models that we'll use throughout the examples:
from async_easy_model import EasyModel, Field
from typing import Optional, List
from datetime import datetime
class User(EasyModel, table=True):
username: str = Field(unique=True)
email: str
is_active: bool = Field(default=True)
class Post(EasyModel, table=True):
title: str
content: str
user_id: Optional[int] = Field(default=None, foreign_key="user.id")
class Comment(EasyModel, table=True):
text: str
post_id: Optional[int] = Field(default=None, foreign_key="post.id")
user_id: Optional[int] = Field(default=None, foreign_key="user.id")
class Department(EasyModel, table=True):
name: str = Field(unique=True)
class Product(EasyModel, table=True):
name: str
price: float
sales: int = Field(default=0)
class Book(EasyModel, table=True):
title: str
author_id: Optional[int] = Field(default=None, foreign_key="author.id")
class Author(EasyModel, table=True):
name: str# Insert a single record
user = await User.insert({
"username": "john_doe",
"email": "john@example.com"
})
# Insert multiple records
users = await User.insert([
{"username": "user1", "email": "user1@example.com"},
{"username": "user2", "email": "user2@example.com"}
])
# Insert with nested relationships
new_post = await Post.insert({
"title": "My Post",
"content": "Content here",
"user": {"username": "jane_doe"}, # Will automatically link to existing user
"comments": [ # Create multiple comments in a single transaction
{"text": "Great post!", "user": {"username": "reader1"}},
{"text": "Thanks for sharing", "user": {"username": "reader2"}}
]
})
# Access nested data without requerying
print(f"Post by {new_post.user.username} with {len(new_post.comments)} comments")
# Insert with nested one-to-many relationships
publisher = await Publisher.insert({
"name": "Example Publisher",
"books": [ # List of nested objects
{
"title": "Python Mastery",
"genres": [
{"name": "Programming"},
{"name": "Education"}
]
},
{"title": "Data Science Handbook"}
]
})
# Access nested relationships immediately
print(f"Publisher: {publisher.name} with {len(publisher.books)} books")
print(f"First book genres: {[g.name for g in publisher.books[0].genres]}")# Select by ID
user = await User.select({"id": 1})
# Select with criteria
users = await User.select({"is_active": True}, all=True)
# Select first matching record
first_user = await User.select({"is_active": True}, first=True)
# Select all records
all_users = await User.select({}, all=True)
# Select with wildcard pattern matching
gmail_users = await User.select({"email": "*@gmail.com"}, all=True)
# Select with ordering
recent_users = await User.select({}, order_by="-created_at", all=True)
# Select with limit
latest_posts = await Post.select({}, order_by="-created_at", limit=5)
# Note: limit > 1 automatically sets all=True
# Select with multiple ordering fields
sorted_users = await User.select({}, order_by=["last_name", "first_name"], all=True)
# Select with relationship ordering
posts_by_author = await Post.select({}, order_by="user.username", all=True)# Update by ID
user = await User.update({"is_active": False}, 1)
# Update by criteria
count = await User.update(
{"is_active": False},
{"last_login": None} # Set all users without login to inactive
)
# Update with relationships
await User.update(
{"department": {"name": "Sales"}}, # Update department relationship
{"username": "john_doe"}
)# Delete by ID
success = await User.delete(1)
# Delete by criteria
deleted_count = await User.delete({"is_active": False})
# Delete with compound criteria
await Post.delete({"user": {"username": "john_doe"}, "is_published": False})The package includes a ModelVisualizer class that makes it easy to generate Entity-Relationship (ER) diagrams for your database models using Mermaid syntax.
from async_easy_model import EasyModel, init_db, db_config, ModelVisualizer
# Initialize your models and database
await init_db()
# Create a visualizer
visualizer = ModelVisualizer()
# Generate a Mermaid ER diagram
er_diagram = visualizer.mermaid()
print(er_diagram)
# Generate a shareable link to view the diagram online
er_link = visualizer.mermaid_link()
print(er_link)
# Customize the diagram title
visualizer.set_title("My Project Database Schema")
custom_diagram = visualizer.mermaid()---
title: EasyModel Table Schemas
config:
layout: elk
---
erDiagram
author {
number id PK
string name "required"
string email
}
book {
number id PK
string title "required"
number author_id FK
string isbn
number published_year
author author "virtual"
tag[] tags "virtual"
}
tag {
number id PK
string name "required"
book[] books "virtual"
}
book_tag {
number id PK
number book_id FK "required"
number tag_id FK "required"
book book "virtual"
tag tag "virtual"
}
review {
number id PK
number book_id FK "required"
number rating "required"
string comment
string reviewer_name "required"
book book "virtual"
}
book ||--o{ author : "author_id"
book_tag ||--o{ book : "book_id"
book_tag ||--o{ tag : "tag_id"
book }o--o{ tag : "many-to-many"
review ||--o{ book : "book_id"
The diagram automatically:
- Shows all tables with their fields and data types
- Identifies primary keys (PK) and foreign keys (FK)
- Shows required fields and virtual relationships
- Visualizes relationships between tables with proper cardinality
- Properly handles many-to-many relationships
async-easy-model provides simplified methods for common query patterns:
# Get all records with relationships loaded (default)
users = await User.all()
# Get all records ordered by a field (ascending)
users = await User.all(order_by="username")
# Get all records ordered by a field (descending)
newest_users = await User.all(order_by="-created_at")
# Get all records ordered by multiple fields
sorted_users = await User.all(order_by=["last_name", "first_name"])
# Get all records ordered by relationship fields
books = await Book.all(order_by="author.name")
# Get the first record
user = await User.first()
# Get the most recently created user
newest_user = await User.first(order_by="-created_at")
# Get a limited number of records
recent_users = await User.limit(10)
# Get a limited number of records with ordering
top_products = await Product.limit(5, order_by="-sales")New in v0.4.3: async-easy-model now includes a compatibility layer that allows you to use familiar SQLAlchemy query patterns alongside EasyModel's simplified API. This enables smooth migration from existing SQLAlchemy/SQLModel code and provides a familiar interface for developers coming from SQLAlchemy backgrounds.
The compatibility layer provides a query() method that returns an AsyncQuery builder, allowing you to chain filter operations just like SQLAlchemy:
from async_easy_model import EasyModel, Field
from async_easy_model.compat import AsyncQuery # For IDE type hints (optional)
class User(EasyModel, table=True):
username: str = Field(index=True)
email: str
age: int
is_active: bool = Field(default=True)
# Use the query builder pattern
users = await User.query().filter(User.age > 25).all()
user = await User.query().filter_by(username="john").first()
# Chain multiple operations
active_adults = await (
User.query()
.filter(User.age >= 18)
.filter(User.is_active == True)
.order_by(User.username)
.limit(10)
.all()
)
# IDE Support Tip (Optional):
# For full IDE autocomplete, add a type annotation:
query: AsyncQuery[User] = User.query() # Optional - only for IDE support
filtered = query.filter(User.age > 25) # IDE will show all available methodsThe compatibility layer provides all common SQLAlchemy patterns:
filter()- Filter using SQLAlchemy expressionsfilter_by()- Filter using keyword argumentsorder_by()- Sort resultslimit()- Limit number of resultsoffset()- Skip resultsjoin()- Join related tables
all()- Get all matching recordsfirst()- Get first matching recordone()- Get exactly one record (raises if not found)one_or_none()- Get one record or Nonecount()- Count matching recordsexists()- Check if any records match
user = await User.find(1)
await user.save() # Save changes to database
await user.refresh() # Refresh from database
await user.delete_instance() # Delete this record# Create new record
user = await User.create(username="jane", email="jane@example.com")
# Find records
user = await User.find(1) # By ID
user = await User.find_by(username="john") # By field
# Bulk operations
users = await User.bulk_create([
{"username": "user1", "email": "user1@example.com"},
{"username": "user2", "email": "user2@example.com"}
])
# Check existence
exists = await User.exists(username="john")
# Count records
count = await User.count()For advanced use cases, you can access SQLAlchemy statement builders:
# Get SQLAlchemy select statement
stmt = User.select_stmt().where(User.age > 25)
# Use with session
async with User.session() as session:
result = await session.execute(stmt)
users = result.scalars().all()You can freely mix EasyModel's simplified API with SQLAlchemy patterns:
# EasyModel style
users = await User.select({"age": {"$gt": 25}})
# SQLAlchemy compatibility style
users = await User.query().filter(User.age > 25).all()
# Both work seamlessly together!Using the models defined earlier, here's how to work with relationships:
# Load all relationships automatically
post = await Post.select({"id": 1})
print(post.user.username) # Access related objects directly
# Load specific relationships
post = await Post.get_with_related(1, ["user", "comments"])
# Load relationships after fetching
post = await Post.select({"id": 1}, include_relationships=False)
await post.load_related(["user", "comments"])
# Insert with nested relationships
new_post = await Post.insert({
"title": "My Post",
"content": "Content here",
"user": {"username": "jane_doe"}, # Will automatically link to existing user
"comments": [ # Create multiple comments in a single transaction
{"text": "Great post!", "user": {"username": "reader1"}},
{"text": "Thanks for sharing", "user": {"username": "reader2"}}
]
})
# Access nested data without requerying
print(f"Post by {new_post.user.username} with {len(new_post.comments)} comments")
# Convert to dictionary with nested relationships
post_dict = post.to_dict(include_relationships=True, max_depth=2)The package can automatically detect and set up bidirectional relationships between models:
class User(EasyModel, table=True):
username: str
class Post(EasyModel, table=True):
title: str
user_id: int = Field(foreign_key="user.id")
# After init_db():
# - post.user relationship is automatically available
# - user.posts relationship is automatically available# SQLite Configuration
db_config.configure_sqlite("database.db")
db_config.configure_sqlite(":memory:") # In-memory database
# PostgreSQL Configuration
db_config.configure_postgres(
user="your_user",
password="your_password",
host="localhost",
port="5432",
database="your_database"
)
# MySQL Configuration
db_config.configure_mysql(
user="your_user",
password="your_password",
host="localhost",
port="3306",
database="your_database"
)
# Custom Connection URL
db_config.set_connection_url("postgresql+asyncpg://user:password@localhost:5432/database")New in v0.3.9: You can now set a global default for include_relationships behavior across all query methods:
# Configure with default_include_relationships=False for better performance
db_config.configure_sqlite("database.db", default_include_relationships=False)
# Or for PostgreSQL
db_config.configure_postgres(
user="your_user",
password="your_password",
host="localhost",
port="5432",
database="your_database",
default_include_relationships=False # Set global default
)
# Or for MySQL
db_config.configure_mysql(
user="your_user",
password="your_password",
host="localhost",
port="3306",
database="your_database",
default_include_relationships=False # Set global default
)Benefits:
- Performance: Set
default_include_relationships=Falseto avoid loading relationships by default, improving query performance - Flexibility: Still override per method call with explicit
TrueorFalsevalues - Backward Compatible: Defaults to
Trueif not specified, maintaining existing behavior
Usage Examples:
# With default_include_relationships=False configured:
users = await User.all() # No relationships loaded (faster)
users_with_rels = await User.all(include_relationships=True) # Override to load relationships
# With default_include_relationships=True configured (default behavior):
users = await User.all() # Relationships loaded
users_no_rels = await User.all(include_relationships=False) # Override to skip relationshipsNew in v0.4.1: The init_db() function now supports configurable auto-relationships handling:
# Default behavior (auto-detect auto-relationships availability)
await init_db()
# Force enable auto-relationships (will warn if not available)
await init_db(has_auto_relationships=True)
# Force disable auto-relationships
await init_db(has_auto_relationships=False)
# Combined with other parameters
await init_db(
migrate=True,
model_classes=[User, Post, Comment],
has_auto_relationships=False
)Benefits:
- Control: Explicitly enable or disable auto-relationships functionality
- Reliability: Auto-relationships errors now issue warnings instead of stopping database initialization
- Flexibility: Can be combined with migration control and specific model classes
- Robust: Database initialization continues even if auto-relationships fail
Parameter Priority:
- Explicit
has_auto_relationshipsparameter (if provided) - Auto-detection of auto-relationships availability (default)
- Fallback to available functionality
For more detailed documentation, please visit the GitHub repository or refer to the DOCS.md file.
This project is licensed under the MIT License - see the LICENSE file for details.