Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions tests/test_scenarios/test_discovery.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,8 +24,9 @@ def setup_env(
self.env.seed(0)

@pytest.mark.parametrize("n_agents", [1, 4])
def test_heuristic(self, n_agents, n_steps=50, n_envs=4):
self.setup_env(n_agents=n_agents, n_envs=n_envs)
@pytest.mark.parametrize("agent_lidar", [True, False])
def test_heuristic(self, n_agents, agent_lidar, n_steps=50, n_envs=4):
self.setup_env(n_agents=n_agents, n_envs=n_envs, use_agent_lidar=agent_lidar)
policy = discovery.HeuristicPolicy(True)

obs = self.env.reset()
Expand Down
82 changes: 43 additions & 39 deletions vmas/scenarios/discovery.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ def make_world(self, batch_dim: int, device: torch.device, **kwargs):
self._min_dist_between_entities = kwargs.pop("min_dist_between_entities", 0.2)
self._lidar_range = kwargs.pop("lidar_range", 0.35)
self._covering_range = kwargs.pop("covering_range", 0.25)
self.use_agent_lidar = kwargs.pop("use_agent_lidar", False)
self._agents_per_target = kwargs.pop("agents_per_target", 2)
self.targets_respawn = kwargs.pop("targets_respawn", True)
self.shared_reward = kwargs.pop("shared_reward", False)
Expand Down Expand Up @@ -57,9 +58,9 @@ def make_world(self, batch_dim: int, device: torch.device, **kwargs):
)

# Add agents
# entity_filter_agents: Callable[[Entity], bool] = lambda e: e.name.startswith(
# "agent"
# )
entity_filter_agents: Callable[[Entity], bool] = lambda e: e.name.startswith(
"agent"
)
entity_filter_targets: Callable[[Entity], bool] = lambda e: e.name.startswith(
"target"
)
Expand All @@ -69,24 +70,32 @@ def make_world(self, batch_dim: int, device: torch.device, **kwargs):
name=f"agent_{i}",
collide=True,
shape=Sphere(radius=self.agent_radius),
sensors=[
# Lidar(
# world,
# angle_start=0.05,
# angle_end=2 * torch.pi + 0.05,
# n_rays=12,
# max_range=self._lidar_range,
# entity_filter=entity_filter_agents,
# render_color=Color.BLUE,
# ),
Lidar(
world,
n_rays=15,
max_range=self._lidar_range,
entity_filter=entity_filter_targets,
render_color=Color.GREEN,
),
],
sensors=(
[
Lidar(
world,
n_rays=15,
max_range=self._lidar_range,
entity_filter=entity_filter_targets,
render_color=Color.GREEN,
)
]
+ (
[
Lidar(
world,
angle_start=0.05,
angle_end=2 * torch.pi + 0.05,
n_rays=12,
max_range=self._lidar_range,
entity_filter=entity_filter_agents,
render_color=Color.BLUE,
)
]
if self.use_agent_lidar
else []
)
),
)
agent.collision_rew = torch.zeros(batch_dim, device=device)
agent.covering_reward = agent.collision_rew.clone()
Expand Down Expand Up @@ -230,15 +239,9 @@ def agent_reward(self, agent):

def observation(self, agent: Agent):
lidar_1_measures = agent.sensors[0].measure()
# lidar_2_measures = agent.sensors[1].measure()
return torch.cat(
[
agent.state.pos,
agent.state.vel,
agent.state.pos,
lidar_1_measures,
# lidar_2_measures,
],
[agent.state.pos, agent.state.vel, lidar_1_measures]
+ ([agent.sensors[1].measure()] if self.use_agent_lidar else []),
dim=-1,
)

Expand Down Expand Up @@ -317,24 +320,25 @@ def compute_action(self, observation: torch.Tensor, u_range: float) -> torch.Ten
closest_point_on_circ_normal *= 0.1
des_pos = closest_point_on_circ + closest_point_on_circ_normal

# Move away from other agents within visibility range
lidar_agents = observation[:, 4:16]
agent_visible = torch.any(lidar_agents < 0.15, dim=1)
_, agent_dir_index = torch.min(lidar_agents, dim=1)
agent_dir = agent_dir_index / lidar_agents.shape[1] * 2 * torch.pi
agent_vec = torch.stack([torch.cos(agent_dir), torch.sin(agent_dir)], dim=1)
des_pos_agent = current_pos - agent_vec * 0.1
des_pos[agent_visible] = des_pos_agent[agent_visible]

# Move towards targets within visibility range
lidar_targets = observation[:, 16:28]
lidar_targets = observation[:, 4:19]
target_visible = torch.any(lidar_targets < 0.3, dim=1)
_, target_dir_index = torch.min(lidar_targets, dim=1)
target_dir = target_dir_index / lidar_targets.shape[1] * 2 * torch.pi
target_vec = torch.stack([torch.cos(target_dir), torch.sin(target_dir)], dim=1)
des_pos_target = current_pos + target_vec * 0.1
des_pos[target_visible] = des_pos_target[target_visible]

if observation.shape[-1] > 19:
# Move away from other agents within visibility range
lidar_agents = observation[:, 19:31]
agent_visible = torch.any(lidar_agents < 0.15, dim=1)
_, agent_dir_index = torch.min(lidar_agents, dim=1)
agent_dir = agent_dir_index / lidar_agents.shape[1] * 2 * torch.pi
agent_vec = torch.stack([torch.cos(agent_dir), torch.sin(agent_dir)], dim=1)
des_pos_agent = current_pos - agent_vec * 0.1
des_pos[agent_visible] = des_pos_agent[agent_visible]

action = torch.clamp(
(des_pos - current_pos) * 10,
min=-u_range,
Expand Down